In this article, we address the prospects and key enabling technologies for highly efficient and accurate device positioning and tracking in fifth generation (5G) radio access networks. Building on the premises of ultra-dense networks (UDNs) as well as on the adoption of multicarrier waveforms and antenna arrays in the access nodes (ANs), we first formulate extended Kalman filter (EKF)-based solutions for computationally efficient joint estimation and tracking of the time of arrival (ToA) and direction of arrival (DoA) of the user nodes (UNs) using uplink (UL) reference signals. Then, a second EKF stage is proposed in order to fuse the individual DoA/ToA estimates from one or several ANs into a UN position estimate. Since all the processing takes place at the network side, the computing complexity and energy consumption at the UN side are kept to a minimum. The cascaded EKFs proposed in this article also take into account the unavoidable relative clock offsets between UNs and ANs, such that reliable clock synchronization of the access-link is obtained as a valuable by-product. The proposed cascaded EKF scheme is then revised and extended to more general and challenging scenarios where not only the UNs have clock offsets against the network time, but also the ANs themselves are not mutually synchronized in time. Finally, comprehensive performance evaluations of the proposed solutions on a realistic 5G network setup, building on the METIS project based outdoor Madrid map model together with complete ray tracing based propagation modeling, are provided. The obtained results clearly demonstrate that by using the developed methods, sub-meter scale positioning and tracking accuracy of moving devices is indeed technically feasible in future 5G radio access networks operating at sub-6 GHz frequencies, despite the realistic assumptions related to clock offsets and potentially even under unsynchronized network elements.
In this article, the prospects and enabling technologies for high-efficiency device positioning and location-aware communications in emerging 5G networks are reviewed. We will first describe some key technical enablers and demonstrate by means of realistic ray-tracing and map based evaluations that positioning accuracies below one meter can be achieved by properly fusing direction and delay related measurements on the network side, even when tracking moving devices. We will then discuss the possibilities and opportunities that such high-efficiency positioning capabilities can offer, not only for location-based services in general, but also for the radio access network itself. In particular, we will demonstrate that geometric location-based beamforming schemes become technically feasible, which can offer substantially reduced reference symbol overhead compared to classical full channel state information (CSI)-based beamforming. At the same time, substantial power savings can be realized in future wideband 5G networks where acquiring full CSI calls for wideband reference signals while location estimation and tracking can, in turn, be accomplished with narrowband pilots.
The future of industrial applications is shaped by intelligent moving IoT devices, such as flying drones, advanced factory robots, and connected vehicles, which may operate (semi-)autonomously. In these challenging scenarios, dynamic radio connectivity at high frequencies -augmented with timely positioning-related information -becomes instrumental to improve communication performance and facilitate efficient computation offloading. Our work reviews the main research challenges and reveals open implementation gaps in Industrial IoT (IIoT) applications that rely on location awareness and multiconnectivity in super high and extremely high frequency bands. It further conducts a rigorous numerical investigation to confirm the potential of precise device localization in the emerging IIoT systems. We focus on positioning-aided benefits made available to multi-connectivity IIoT device operation at 28 GHz, which notably improve data transfer rates, communication latency, and extent of control overhead.
In this paper, we exploit the 3D-beamforming features of multiantenna equipment employed in fifth generation (5G) networks, operating in the millimeter wave (mmW) band, for accurate positioning and tracking of users. We consider sequential estimation of users' positions, and propose a twostage extended Kalman filter (EKF) that is based on reference signal received power (RSRP) measurements. In particular, beamformed downlink (DL) reference signals (RSs) are transmitted by multiple base stations (BSs) and measured by user equipments (UEs) employing receive beamforming. The so-obtained beam-RSRP (BRSRP) measurements are fed back to the BSs where the corresponding directions of departure (DoDs) are sequentially estimated by a novel EKF. Such angle estimates from multiple BSs are subsequently fused on a central entity into 3D position estimates of UEs by means of an angle-based EKF. The proposed positioning scheme is scalable since the computational burden is shared among different network entities, namely transmission/reception points (TRPs) and 5G-NR Node B (gNB), and may be accomplished with the signalling currently specified for 5G. We assess the performance of the proposed algorithm on a realistic outdoor 5G deployment with a detailed ray tracing propagation model based on the METIS Madrid map. Numerical results with a system operating at 39 GHz show that sub-meter 3D positioning accuracy is achievable in future mmW 5G networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.