The relationship between the host and the microbiome, or the assemblage of microorganisms (including bacteria, archaea, fungi, and viruses), has been proven crucial for its health and disease development. The high dimensionality of microbiome datasets has often been addressed as a major difficulty for data analysis, such as the use of machine-learning (ML) and deep-learning (DL) models. Here, we present BiGAMi, a bi-objective genetic algorithm fitness function for feature selection in microbial datasets to train high-performing phenotype classifiers. The proposed fitness function allowed us to build classifiers that outperformed the baseline performance estimated by the original studies by using as few as 0.04% to 2.32% features of the original dataset. In 35 out of 42 performance comparisons between BiGAMi and other feature selection methods evaluated here (sequential forward selection, SelectKBest, and GARS), BiGAMi achieved its results by selecting 6–93% fewer features. This study showed that the application of a bi-objective GA fitness function against microbiome datasets succeeded in selecting small subsets of bacteria whose contribution to understood diseases and the host state was already experimentally proven. Applying this feature selection approach to novel diseases is expected to quickly reveal the microbes most relevant to a specific condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.