Human reasoning in hypothesis-testing tasks like Wason's (1966, 1968) selection task has been depicted as prone to systematic biases. However, performance on this task has been assessed against a now outmoded falsificationist philosophy of science. Therefore, the experimental data is reassessed in the light of a Bayesian model of optimal data selection in inductive hypothesis testing. The model provides a rational analysis (Anderson, 1990) of the selection task that fits well with people's performance on both abstract and thematic versions of the task. The model suggests that reasoning in these tasks may be rational rather than subject to systematic bias. Over the past 30 years, results in the psychology of reasoning have raised doubts about human rationality. The assumption of human rationality has a long history. Aristotle took the capacity for rational thought to be the defining characteristic of human beings, the capacity that separated us from the animals. Descartes regarded the ability to use language and to reason as the hallmarks of the mental that separated it from the merely physical. Many contemporary philosophers of mind also appeal to a basic principle of rationality in accounting for everyday, folk psychological explanation whereby we explain each other's behavior in terms of our beliefs and desires (
According to Aristotle, humans are the rational animal. The borderline between rationality and irrationality is fundamental to many aspects of human life including the law, mental health, and language interpretation. But what is it to be rational? One answer, deeply embedded in the Western intellectual tradition since ancient Greece, is that rationality concerns reasoning according to the rules of logic – the formal theory that specifies the inferential connections that hold with certainty between propositions. Piaget viewed logical reasoning as defining the end-point of cognitive development; and contemporary psychology of reasoning has focussed on comparing human reasoning against logical standards.Bayesian Rationalityargues that rationality is defined instead by the ability to reason aboutuncertainty. Although people are typically poor at numerical reasoning about probability, human thought is sensitive to subtle patterns of qualitative Bayesian, probabilistic reasoning. In Chapters 1–4 ofBayesian Rationality(Oaksford & Chater 2007), the case is made that cognition in general, and human everyday reasoning in particular, is best viewed as solving probabilistic, rather than logical, inference problems. In Chapters 5–7 the psychology of “deductive” reasoning is tackled head-on: It is argued that purportedly “logical” reasoning problems, revealing apparently irrational behaviour, are better understood from a probabilistic point of view. Data from conditional reasoning, Wason's selection task, and syllogistic inference are captured by recasting these problems probabilistically. The probabilistic approach makes a variety of novel predictions which have been experimentally confirmed. The book considers the implications of this work, and the wider “probabilistic turn” in cognitive science and artificial intelligence, for understanding human rationality.
A probabilistic computational level model of conditional inference is proposed that can explain polarity biases in conditional inference (e.g., J. St.B.T. Evans, 1993). These biases are observed when J. St.B.T. Evans's (1972) negations paradigm is used in the conditional inference task. The model assumes that negations define higher probability categories than their affirmative counterparts (M. Oaksfurd & K. Stenning, 1992); for example, P(not-dog) > P(dog). This identification suggests that polarity biases are really a rational effect of high-probability categories. Three experiments revealed that, consistent with this probabilistic account, when high-probability categories are used instead of negations, a highprobability conclusion effect is observed. The relationships between the probabilistic model and other phenomena and other theories in conditional reasoning are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.