Punctate palmoplantar keratodermas (PPKPs) are rare autosomal-dominant inherited skin diseases that are characterized by multiple hyperkeratotic plaques distributed on the palms and soles. To date, two different loci in chromosomal regions 15q22-15q24 and 8q24.13-8q24.21 have been reported. Pathogenic mutations, however, have yet to be identified. In order to elucidate the genetic cause of PPKP type Buschke-Fischer-Brauer (PPKP1), we performed exome sequencing in five affected individuals from three families, and we identified in chromosomal region 15q22.33-q23 two heterozygous nonsense mutations-c.370C>T (p.Arg124(∗)) and c.481C>T (p.Arg161(∗))-in AAGAB in all affected individuals. Using immunoblot analysis, we showed that both mutations result in premature termination of translation and truncated protein products. Analyses of mRNA of affected individuals revealed that the disease allele is either not detectable or only detectable at low levels. To assess the consequences of the mutations in skin, we performed immunofluorescence analyses. Notably, the amount of granular staining in the keratinocytes of affected individuals was lower in the cytoplasm but higher around the nucleus than it was in the keratinocytes of control individuals. AAGAB encodes the alpha-and gamma-adaptin-binding protein p34 and might play a role in membrane traffic as a chaperone. The identification of mutations, along with the results from additional studies, defines the genetic basis of PPKP1 and provides evidence that AAGAB plays an important role in skin integrity.
Pathogenic mutations in a large number of human epithelial keratins have been well characterized. However, analogous mutations in the hard alpha-keratins of hair and nail have not yet been described. Monilethrix is a rare autosomal dominant hair defect with variable expression. Hairs from affected individuals show a beaded structure of alternating elliptical nodes and constrictions (internodes). These internodes exhibit a high prospensity to weathering and fracture. Strong evidence that trichocyte keratin defects might underlie this hair disorder was provided by genetic linkage analyses that mapped this disease to the type-II keratin gene cluster on 12q13. All affected individuals from a four-generation British family with monilethrix, previously linked to the type-II keratin gene cluster, as well as three unrelated single monilethrix patients, exhibited a heterozygous point mutation in the gene for type-II hair cortex keratin hHb6, leading to lysine substitution of a highly conserved glutamic acid residue in the helix termination motif (Glu 410 Lys). In a three-generation French family with monilethrix of a milder and variable phenotype, we detected another heterozygous point mutation in the same glutamic acid codon of hHb6, which resulted in a conservative aspartic acid substitution (Glu 410 Asp). These mutations provide the first direct evidence for involvement of hair keratins in hair disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.