This European Respiratory Society statement provides a comprehensive overview on protracted bacterial bronchitis (PBB) in children. A task force of experts, consisting of clinicians from Europe and Australia who manage children with PBB determined the overall scope of this statement through consensus. Systematic reviews addressing key questions were undertaken, diagrams in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement constructed and findings of relevant studies summarised. The final content of this statement was agreed upon by all members.The current knowledge regarding PBB is presented, including the definition, microbiology data, known pathobiology, bronchoalveolar lavage findings and treatment strategies to manage these children. Evidence for the definition of PBB was sought specifically and presented. In addition, the task force identified several major clinical areas in PBB requiring further research, including collecting more prospective data to better identify the disease burden within the community, determining its natural history, a better understanding of the underlying disease mechanisms and how to optimise its treatment, with a particular requirement for randomised controlled trials to be conducted in primary care.This article has supplementary material available from
Rationale: Pooling data from multiple cohorts and extending the time frame across childhood should minimize study-specific effects, enabling better characterization of childhood wheezing. Objectives: To analyze wheezing patterns from early childhood to adolescence using combined data from five birth cohorts. Methods: We used latent class analysis to derive wheeze phenotypes among 7,719 participants from five birth cohorts with complete report of wheeze at five time periods. We tested the associations of derived phenotypes with late asthma outcomes and lung function, and investigated the uncertainty in phenotype assignment. Results: We identified five phenotypes: never/infrequent wheeze (52.1%), early onset preschool remitting (23.9%), early onset midchildhood remitting (9%), persistent (7.9%), and late-onset wheeze (7.1%). Compared with the never/infrequent wheeze, all phenotypes had higher odds of asthma and lower forced expiratory volume in 1 second and forced expiratory volume in 1 second/forced vital capacity in adolescence. The association with asthma was strongest for persistent wheeze (adjusted odds ratio, 56.54; 95% confidence interval, 43.75–73.06). We observed considerable within-class heterogeneity at the individual level, with 913 (12%) children having low membership probability (<0.60) of any phenotype. Class membership certainty was highest in persistent and never/infrequent, and lowest in late-onset wheeze (with 51% of participants having membership probabilities <0.80). Individual wheezing patterns were particularly heterogeneous in late-onset wheeze, whereas many children assigned to early onset preschool remitting class reported wheezing at later time points. Conclusions: All wheeze phenotypes had significantly diminished lung function in school-age children, suggesting that the notion that early life episodic wheeze has a benign prognosis may not be true for a proportion of transient wheezers. We observed considerable within-phenotype heterogeneity in individual wheezing patterns.
Large differences in COVID‐19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage were associated with low death rates in European countries. SARS‐CoV‐2 binds to its receptor, the angiotensin converting enzyme 2 (ACE2). As a result of SARS‐Cov‐2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT 1 R) axis associated with oxidative stress. This leads to insulin resistanceas well as lung and endothelial damage, two severe outcomes of COVID‐19. The nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) is the most potent antioxidant in humans and can block the AT 1 R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are given: Kimchi in Korea, westernized foods and the slum paradox. It is proposed that fermented cabbage is a proof‐of‐concept of dietary manipulations that may enhance Nrf2‐associated antioxidant effects helpful in mitigating COVID‐19 severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.