We have developed a noncontact and nondestructive technique that uses laser-generated and detected surface acoustic waves to rapidly determine the local acoustic velocity, in order to map the microstructure of multi-grained materials. Optical fringes excite surface waves at a fixed frequency, and the generation efficiency is determined by how closely the fringe spacing matches the acoustic wavelength in the excitation region. Images of titanium alloys are presented, acquired using the technique. Methods to improve the current lateral resolution of 0.8mm are discussed, and the ability to measure velocity change to an accuracy of one part in 3300 is experimentally demonstrated.
A fast, non-contact Rayleigh wave scanning microscope is demonstrated, which is capable of scan rates of up to a maximum of 1000 measurements/s with typical speeds of up to 250 measurements/s on real samples. The system uses a mode-locked, Q-switched Nd:YAG laser operating at a mode-locked frequency of 82 MHz and a Q-switch frequency of 1 kHz. The Q-switch frequency determines the upper limit of the scanning rate. The generating laser illumination is delivered and controlled by a computer-generated hologram (CGH). The generating laser produces around 30 pulses at 82 MHz and additional harmonics at 164 and 246 MHz and above. The microscope can operate at these harmonics provided the spatial bandwidth of the optics and the temporal bandwidth of the electronics are suitable. The ultrasound is detected with a specialized knife-edge detector. The microscope has been developed for imaging on isotropic materials. Despite this, the system can be used on anisotropic materials, but imaging and interpreting images can be difficult. The anisotropy and grain structure of the material can distort the Rayleigh wavefront, leading to signal loss. A model has been developed to simulate polycrystalline-anisotropic materials; this is discussed along with possible solutions that would overcome the problems associated with anisotropy. Rayleigh wave amplitude images are demonstrated on silicon nitride at 82 and 164 MHz and on polycrystalline aluminium at 82 MHz.
This paper describes the development of a new optical system for accurate measurement of surface wave velocity and attenuation. A mode-locked Q-switch laser generates a Rayleigh wave tone burst which is detected with a two beam interferometer system. The resulting signals are then processed using a simple cross correlation algorithm. Results demonstrating the velocity resolution of the system are presented on both ceramic and metallic samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.