Cardiovascular simulations have great potential as a clinical tool for planning and evaluating patient-specific treatment strategies for those suffering from congenital heart diseases, specifically Fontan patients. However, several bottlenecks have delayed wider deployment of the simulations for clinical use; the main obstacle is simulation cost. Currently, time-averaged clinical flow measurements are utilized as numerical boundary conditions (BCs) in order to reduce the computational power and time needed to offer surgical planning within a clinical time frame. Nevertheless, pulsatile blood flow is observed in vivo, and its significant impact on numerical simulations has been demonstrated. Therefore, it is imperative to carry out a comprehensive study analyzing the sensitivity of using time-averaged BCs. In this study, sensitivity is evaluated based on the discrepancies between hemodynamic metrics calculated using time-averaged and pulsatile BCs; smaller discrepancies indicate less sensitivity. The current study incorporates a comparison between 3D patient-specific CFD simulations using both the time-averaged and pulsatile BCs for 101 Fontan patients. The sensitivity analysis involves two clinically important hemodynamic metrics: hepatic flow distribution (HFD) and indexed power loss (iPL). Paired demographic group comparisons revealed that HFD sensitivity is significantly different between single and bilateral superior vena cava cohorts but no other demographic discrepancies were observed for HFD or iPL. Multivariate regression analyses show that the best predictors for sensitivity involve flow pulsatilities, time-averaged flow rates, and geometric characteristics of the Fontan connection. These predictors provide patient-specific guidelines to determine the effectiveness of analyzing patient-specific surgical options with time-averaged BCs within a clinical time frame.
The Fontan procedure is a common palliative intervention for sufferers of single ventricle congenital heart defects that results in an anastomosis of the venous return to the pulmonary arteries called the total cavopulmonary connection (TCPC). Local TCPC and global Fontan circulation hemodynamics are studied with in vitro circulatory models because of hemodynamic ties to Fontan patient long-term complications. The majority of in vitro studies, to date, employ a rigid TCPC model. Recently, a few studies have incorporated flexible TCPC models, but provide no justification for the model material properties. The method set forth in this study successfully utilizes patient-specific flow and pressure data from phase contrast magnetic resonance images (PCMRI) (n = 1) and retrospective pulse-pressure data from an age-matched patient cohort (n = 10) to verify the compliance of an in vitro TCPC model. These data were analyzed, and the target compliance was determined as 1.36 ± 0.78 mL/mm Hg. A method of in vitro compliance testing and computational simulations was employed to determine the in vitro flexible TCPC model material properties and then use those material properties to estimate the wall thickness necessary to match the patient-specific target compliance. The resulting in vitro TCPC model compliance was 1.37 ± 0.1 mL/mm Hg-a value within 1% of the patient-specific compliance. The presented method is useful to verify in vitro model accuracy of patient-specific TCPC compliance and thus improve patient-specific hemodynamic modeling.
The current methodology of Fontan palliation results in a one "pump" circulatory system with passive flow to the lungs. Inherent hemodynamic differences exist between a biventricular circulatory system and this modified physiology, leading to a host of long-term complications. Mechanical circulatory support (MCS) is a potential option to combat these pathophysiological conditions. In this study, we examine the VentriFlo True Pulse Pump as a MCS option to support a failing Fontan patient. An in vitro circulatory loop was used to model a failing Fontan patient, reproducing pathophysiological pressures and flow rates. The VentriFlo True Pulse Pump was positioned as a right sided support, testing multiple cannulation and baffle restriction strategies, as well as various pumping parameters including flow rate, frequency, stroke volume and the ejection to filling time ratio. A 10 mm Hg decrease in IVC pressure and 0.75 L/min increase in cardiac output were achieved using a complete baffle restriction strategy. Additional cannulation and banding strategies were not as successful. Pump flow rate and frequency significantly impacted hemodynamics, while the ejection to filling time ratio did not. Though not ideal, complete baffle restriction was necessary to achieve successful support. The ability to tune individual pumping parameters for a given MCS device will have a substantial impact on the pressures and flow augmentation seen in a Fontan circulation. Both future pump design and off-label VADs for Fontan use should consider the pump configuration and parameter combinations presented here, which offered successful support. Key Words: Congenital heart disease-Fontan-Mechanical circulatory support-Single ventricle-Ventricular assist device.The current methodology of Fontan palliation results in a one "pump" circulatory system with passive, nonpulsatile flow to the lungs. Inherent hemodynamic differences exist between a biventricular circulatory system and this modified physiology, including elevated central venous pressures (CVP) and insufficient cardiac output (CO), as well as a myriad of ventricular function, impedance and congestion issues (1-5). As these patients survive into early adulthood, numerous long-term complications are common, with liver disease, protein losing enteropathy and plastic bronchitis among the most prevalent (3,(6)(7)(8)(9).In order to moderate these long-term problems, a circulatory correction rather than palliation is needed; and with a limited number of immediate heart transplants available, mechanical circulatory support (MCS) has become a potential option as a bridge-to-transplant therapy. However, the use of MCS in Fontan patients poses unique challenges including low preload and afterload, an absent upstream capacitance chamber, and potentially difficult anatomic implementation (10).The two approaches for Fontan MCS include (i) designing a new pump specifically for Fontan use, or (ii) using an existing pump off-label with the hope that it can provide adequate support in an environment othe...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.