The neuron‐intrinsic response to axonal injury differs markedly between neurons of the peripheral and central nervous system. Following a peripheral lesion, a robust axonal growth program is initiated, whereas neurons of the central nervous system do not mount an effective regenerative response. Increasing the neuron‐intrinsic regenerative response would therefore be one way to promote axonal regeneration in the injured central nervous system. The large‐diameter sensory neurons located in the dorsal root ganglia are pseudo‐unipolar neurons that project one axon branch into the spinal cord, and, via the dorsal column to the brain stem, and a peripheral process to the muscles and skin. Dorsal root ganglion neurons are ideally suited to study the neuron‐intrinsic injury response because they exhibit a successful growth response following peripheral axotomy, while they fail to do so after a lesion of the central branch in the dorsal column. The dorsal column injury model allows the neuron‐intrinsic regeneration response to be studied in the context of a spinal cord injury. Here we will discuss the advantages and disadvantages of this model. We describe the surgical methods used to implement a lesion of the ascending fibers, the anatomy of the sensory afferent pathways and anatomical, electrophysiological, and behavioral techniques to quantify regeneration and functional recovery. Subsequently we review the results of experimental interventions in the dorsal column lesion model, with an emphasis on the molecular mechanisms that govern the neuron‐intrinsic injury response and manipulations of these after central axotomy. Finally, we highlight a number of recent advances that will have an impact on the design of future studies in this spinal cord injury model, including the continued development of adeno‐associated viral vectors likely to improve the genetic manipulation of dorsal root ganglion neurons and the use of tissue clearing techniques enabling 3D reconstruction of regenerating axon tracts. © 2018 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 00: 000–000, 2018
Developing neurons form synapses at a high rate. Synaptic transmission is very energy-demanding and likely requires ATP production by mitochondria nearby. Mitochondria might be targeted to active synapses in young dendrites, but whether such motility regulation mechanisms exist is unclear. We investigated the relationship between mitochondrial motility and neuronal activity in the primary visual cortex of young mice in vivo and in slice cultures. During the first 2 postnatal weeks, mitochondrial motility decreases while the frequency of neuronal activity increases. Global calcium transients do not affect mitochondrial motility. However, individual synaptic transmission events precede local mitochondrial arrest. Pharmacological stimulation of synaptic vesicle release, but not focal glutamate application alone, stops mitochondria, suggesting that an unidentified factor co-released with glutamate is required for mitochondrial arrest. A computational model of synaptic transmission-mediated mitochondrial arrest shows that the developmental increase in synapse number and transmission frequency can contribute substantially to the age-dependent decrease of mitochondrial motility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.