Scalability is a common issue among the most used permissionless blockchains, and several approaches have been proposed to solve this issue. Tackling scalability while preserving the security and decentralization of the network is an important challenge. To deliver effective scaling solutions, Ethereum is on the path of a major protocol improvement called Ethereum 2.0 (Eth2), which implements sharding. As the change of consensus mechanism is an extremely delicate matter, this improvement will be achieved through different phases, the first of which is the implementation of the Beacon Chain. For this, a specification has been developed, and multiple groups have implemented clients to run the new protocol. This work analyzes the resource usage behavior of different clients running as Eth2 nodes, comparing their performance and analyzing differences. Our results show multiple important network perturbations and how different clients react to them. We discuss the differences between Eth2 clients and their limitations.
Achieving the equilibrium between scalability, sustainability, and security while keeping decentralization has prevailed as the target solution for decentralized blockchain applications over the last years. Several approaches have been proposed by multiple blockchain teams to achieve it, Ethereum being among them. Ethereum is on the path of a major protocol improvement called Ethereum 2.0 (Eth2), implementing Sharding and introducing the Proof-of-Stake (PoS). As the change of consensus mechanism is a delicate matter, this improvement will be achieved through different phases, the first of which is the implementation of the Beacon Chain. As Ethereum1, Eth2 relies on a decentralized peer-to-peer (p2p) network for the message distribution. Up to date, we estimate that there are around 5.000 nodes in the Eth2 main net geographically distributed. However, the topology of this one still prevails unknown. In this paper, we present the results obtained from the analysis we performed on the Eth2 p2p network. Describing the topology of the network, as possible hazards that this one implies.
Achieving the equilibrium between scalability, sustainability and security has prevailed as the ideal solution for the decentralized blockchain applications over the last years. Several approaches have been proposed being Ethereum a solid proposal among them. Ethereum is on the path of a major protocol improvement called Ethereum 2.0 (Eth2), implementing Sharding and introducing the Proof-of-Stake (PoS). As the change of consensus mechanism is a delicate matter, this improvement will be achieved through different phases, first of which is the implementation of the Beacon Chain. The implementation of the latest has been stated with the recent launch of the Eth2 main net. In this work, we introduce an Eth2 network monitor tool, called Armiarma, used to generate a complete analysis of the p2p network of the Eth2 main net. In this paper, we present some of the results of what this Eth2 network monitor can achieve.
Like most modern blockchain networks, Ethereum has relied on economic incentives to promote honest participation in the chain's consensus. The distributed character of the platform, together with the "randomness" or "luck" factor that both proof of work (PoW) and proof of stake (PoS) provide when electing the next block proposer, pushed the industry to model and improve the reward system of the system. With several improvements to predict PoW block proposal rewards and to maximize the extractable rewards of the same ones, the ultimate Ethereum's transition to PoS applied in the Paris Hard-Fork, more generally known as "The Merge", has meant a significant modification on the reward system in the platform. In this paper, we aim to break down both theoretically and empirically the new reward system in this post-merge era. We present a highly detailed description of the different rewards and their share among validators' rewards. Ultimately, we offer a study that uses the presented reward model to analyze the performance of the network during this transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.