Two new series of twenty-eight selenocyanate and diselenide derivatives containing amide moiety were designed, synthesized and evaluated for their leishmanicidal activity against Leishmania infantum axenic amastigotes, and selectivity was assessed in human THP-1 cells. Eleven compounds exhibited excellent leishmanicidal activity with EC50 values lower than the reference drug miltefosine (EC50 = 2.84 μM). In addition, for six of them the selectivity index ranged from 9 to > 1442, greater than both references used. The most potent and selective compounds were 2h, 2k and 2m that displayed EC50 values of 0.52, 1.19 and 0.50 μM and a high selectivity index (SI) when tested against THP-1 monocytic cells (SI = >1442, > 672 and >1100, respectively). These derivatives showed an efficacy similar to that of the reference drugs but much better SI. They also showed very interesting activity values against infected macrophages. Trypanothione reductase (TryR) activity and intracellular thiol level measurement assays were performed for the three best compounds in an attempt to elucidate their mechanism of action. Even though the new analogues exhibited comparable or better inhibitory activities than reference TryR inhibitors more studies are necessary to confirm this target. To sum up, our findings suggest that the three presented compounds could constitute lead leishmanicidal drug candidates.
We report new organoselenium compounds bearing the sulfonamide moiety as effective inhibitors of the β-isoform of Carbonic Anhydrase from the unicellular parasitic protozoan L. donovani chagasi. All derivatives were evaluated in vitro for their leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells. Compounds 3e-g showed their activity in the low micromolar range with IC50 values spanning from 0.72 to 0.81 µM and selectivity indexes (SI) >8 ( for 3g SI >30), thus much higher than those observed for the reference drugs miltefosine and edelfosine. This is the first study which reports new selenoderivatives with promising leishmanicidal properties and acting as Carbonic Anhydrase inhibitors too thus paving the way to the development of innovative agents for the treatment of neglected diseases such as leishmaniasis.
We report for the first time a novel series of tellurides bearing sulfonamide as selective and potent inhibitors of the β-class carbonic anhydrase (CA; EC 4.2.1.1) enzyme expressed in Leishmania donovani protozoa. Such derivatives showed high activity against axenic amastigotes, and among them, compound 5g (4-(((3,4,5-trimethoxyphenyl)tellanyl)methyl)benzenesulfonamide) showed an IC50 of 0.02 μM being highly selective for the parasites over THP-1 cells with a selectivity index of 300. The in vitro and in vivo toxicity experiments showed compound 5g to possess a safe profile and thus paving the way for tellurium-containing compounds as novel drug entities.
Adoptive cellular immunotherapy using chimeric antigen receptor (CAR)-modified T cells and Natural Killer (NK) cells are common immune cell sources administered to treat cancer patients. In detail, whereas CAR-T cells induce outstanding responses in a subset of hematological malignancies, responses are much more deficient in solid tumors. Moreover, NK cells have not shown remarkable results up to date. In general, immune cells present high plasticity to change their activity and phenotype depending on the stimuli they receive from molecules secreted in the tumor microenvironment (TME). Consequently, immune cells will also secrete molecules that will shape the activities of other neighboring immune and tumor cells. Specifically, NK cells can polarize to activities as diverse as angiogenic ones instead of their killer activity. In addition, tumor cell phagocytosis by macrophages, which is required to remove dying tumor cells after the attack of NK cells or CAR-T cells, can be avoided in the TME. In addition, chemotherapy or radiotherapy treatments can induce senescence in tumor cells modifying their secretome to a known as “senescence-associated secretory phenotype” (SASP) that will also impact the immune response. Whereas the SASP initially attracts immune cells to eliminate senescent tumor cells, at high numbers of senescent cells, the SASP becomes detrimental, impacting negatively in the immune response. Last, CAR-T cells are an attractive option to overcome these events. Here, we review how molecules secreted in the TME by either tumor cells or even by immune cells impact the anti-tumor activity of surrounding immune cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.