Quantum computing makes use of quantum resources provided by the underlying quantum nature of matter to enhance classical computation. However, current Noisy Intermediate-Scale Quantum (NISQ) era in quantum computing is characterized by the use of quantum processors comprising from a few tens to, at most, few hundreds of physical qubits without implementing quantum error correction techniques. This limits the scalability in the implementation of quantum algorithms. Digital-analog quantum computing (DAQC) has been proposed as a more resilient alternative quantum computing paradigm to outperform digital quantum computation within the NISQ era framework. It arises from adding the flexibility provided by fast single-qubit gates to the robustness of analog quantum simulations. Here, we perform a careful comparison between digital and digital-analog paradigms under the presence of noise sources. The comparison is illustrated by comparing the performance of the quantum Fourier transform algorithm under a wide range of single-and two-qubit noise sources. Indeed, we obtain that, when the different noise channels usually present in superconducting quantum processors are considered, the fidelity of the QFT algorithm for the digital-analog paradigm outperforms the one obtained for the digital approach. Additionally, this difference grows when the size of the processor scales up, constituting consequently a sensible alternative paradigm in the NISQ era. Finally, we show how the DAQC paradigm can be adapted to quantum error mitigation techniques for canceling different noise sources, including the bang error.
Optimization problems is one of the most challenging applications of quantum computers, as well as one of the most relevants. As a consequence, it has attracted huge efforts to obtain a speedup over classical algorithms using quantum resources. Up to now, many problems of different nature have been addressed through the perspective of this revolutionary computation paradigm, but there are still many open questions. In this work, a hybrid classical-quantum approach is presented for dealing with the one-dimensional Bin Packing Problem (1dBPP). The algorithm comprises two modules, each one designed for being executed in different computational ecosystems. First, a quantum subroutine seeks a set of feasible bin configurations of the problem at hand. Secondly, a classical computation subroutine builds complete solutions to the problem from the subsets given by the quantum subroutine. Being a hybrid solver, we have called our method H-BPP. To test our algorithm, we have built 18 different 1dBPP instances as a benchmarking set, in which we analyse the fitness, the number of solutions and the performance of the QC subroutine. Based on these figures of merit we verify that H-BPP is a valid technique to address the 1dBPP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.