As reliable, efficient genome sequencing becomes ubiquitous, the need for similarly reliable and efficient variant calling becomes increasingly important. The Genome Analysis Toolkit (GATK), maintained by the Broad Institute, is currently the widely accepted standard for variant calling software. However, alternative solutions may provide faster variant calling without sacrificing accuracy. One such alternative is Sentieon DNASeq, a toolkit analogous to GATK but built on a highly optimized backend. We conducted an independent evaluation of the DNASeq single-sample variant calling pipeline in comparison to that of GATK. Our results support the near-identical accuracy of the two software packages, showcase optimal scalability and great speed from Sentieon, and describe computational performance considerations for the deployment of DNASeq.
Recent advancements in sequencing technology have led to a drastic reduction in genome sequencing costs. This development has generated an unprecedented amount of data that must be stored, processed, and communicated. To facilitate this effort, compression of genomic files has been proposed. Specifically, lossy compression of quality scores is emerging as a natural candidate for reducing the growing costs of storage. A main goal of performing DNA sequencing in population studies and clinical settings is to identify genetic variation. Though the field agrees that smaller files are advantageous, the cost of lossy compression, in terms of variant discovery, is unclear.Bioinformatic algorithms to identify SNPs and INDELs use base quality score information; here, we evaluate the effect of lossy compression of quality scores on SNP and INDEL detection. Specifically, we investigate how the output of the variant caller when using the original data differs from that obtained when quality scores are replaced by those generated by a lossy compressor. Using gold standard genomic datasets and simulated data, we are able to analyze how accurate the output of the variant calling is, both for the original data and that previously lossily compressed. We show that lossy compression can significantly alleviate the storage while maintaining variant calling performance comparable to that with the original data. Further, in some cases lossy compression can lead to variant calling performance that is superior to that using the original file. We envisage our findings and framework serving as a benchmark in future development and analyses of lossy genomic data compressors.
Motivation High-Throughput Sequencing technologies produce huge amounts of data in the form of short genomic reads, associated quality values and read identifiers. Because of the significant structure present in these FASTQ datasets, general-purpose compressors are unable to completely exploit much of the inherent redundancy. Although there has been a lot of work on designing FASTQ compressors, most of them lack in support of one or more crucial properties, such as support for variable length reads, scalability to high coverage datasets, pairing-preserving compression and lossless compression. Results In this work, we propose SPRING, a reference-free compressor for FASTQ files. SPRING supports a wide variety of compression modes and features, including lossless compression, pairing-preserving compression, lossy compression of quality values, long read compression and random access. SPRING achieves substantially better compression than existing tools, for example, SPRING compresses 195 GB of 25× whole genome human FASTQ from Illumina’s NovaSeq sequencer to less than 7 GB, around 1.6× smaller than previous state-of-the-art FASTQ compressors. SPRING achieves this improvement while using comparable computational resources. Availability and implementation SPRING can be downloaded from https://github.com/shubhamchandak94/SPRING. Supplementary information Supplementary data are available at Bioinformatics online.
The adult liver has exceptional ability to regenerate, but how it sustains normal metabolic activities during regeneration remains unclear. Here, we use partial hepatectomy (PHx) in tandem with single-cell transcriptomics to track cellular transitions and heterogeneities of ~22,000 liver cells through the initiation, progression, and termination phases of mouse liver regeneration. Our results reveal that following PHx, a subset of hepatocytes transiently reactivates an early-postnatal-like gene expression program to proliferate, while a distinct population of metabolically hyperactive cells appears to compensate for any temporary deficits in liver function. Importantly, through combined analysis of gene regulatory networks and cellcell interaction maps, we find that regenerating hepatocytes redeploy key developmental gene regulons, which are guided by extensive ligand-receptor mediated signaling events between hepatocytes and non-parenchymal cells. Altogether, our study offers a detailed blueprint of the intercellular crosstalk and cellular reprogramming that balances the metabolic and proliferation requirements of a regenerating liver..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.