FP21 is a glycoprotein which, when tracked by radioactivity in its fucosyl moiety, was previously detected in the cytosol of Dictyostelium cells after cell fractionation. This compartmentalization is confirmed by SDS-polyacrylamide gel electrophoresis/Western blotting of cell fractions using three different antibodies. Although a substantial fraction of FP21 is also detected in the particulate fraction using these new antibodies, particulate FP21 is released by disrupting protein-protein interactions, but not membrane disruption. Since purified FP21 is susceptible to aggregation, and purified nuclei do not contain FP21, particulate FP21 is also part of the cytosol. Additional compositional and structural information provides strong evidence that FP21 does not at any time traverse the rough endoplasmic reticulum. First, cDNAs spanning the entire coding region of the FP21 gene predict no hydrophobic motifs expected to promote membrane insertion, but do predict an NH2-terminal coiled coil domain which could explain aggregation. Second, monosaccharide composition analysis of the predominant glycoform of FP21 yields 2 mol of galactose, 1 mol of xylose, and 1 mol of fucose/mol of polypeptide; FP21 from a fucosylation-defective mutant contains 1 additional mol of xylose in place of fucose. Thus the N-glycosylation sequon present in FP21 is not utilized by oligosaccharyl transferase, which resides in the rough endoplasmic reticulum. These findings indicate that nascent FP21 remains in the cytosol after synthesis and is therefore glycosylated by unusual cytosolic xylosyl-, galactosyl-, and fucosyltransferases.
The enzyme-linked colloidal gold affinity labelling technique was tested as a method to localize cellulose on thin sections of plant cell walls and slime mold spores. Commercially available cellulase from cultures of Trichoderma reesei, the main components being cellobiohydrolase I and II (CBH I, CBH II) and endoglucanase (EG), was linked to colloidal gold by using standard techniques and applied as a dilute, buffered suspension to thin sections. After brief exposure, e.g., 15-30 minutes, cellulose exposed on the surface of sections was labelled with the enzyme-gold complex. Poststaining did not appear to have a deleterious effect on the labelled sections. The specificity of labelling was demonstrated by its complete inhibition when carboxymethylcellulose was incorporated in the labelling mixture, by lack of labelling of 1,4-beta-mannans or 1,3-beta-xylans in noncellulosic walls of marine algae, by lack of labelling of 1,4-beta-glucans in chitin, by much lower labelling density when done at 4 degrees C, and by lack of labelling when sections were predigested with cellulase. Labelling with the crude commercial cellulase was compared to labelling with purified CBH I-, CBH II-, and EG-linked colloidal gold, and the labelling pattern was similar. This method was found useful on conventionally fixed material and required no special preparation other than the use of inert (Ni or Au) grids and 0.5% gelatin to reduce nonspecific binding of the gold complex. Labelling was similar in the several embedding resins tested: LR White, Lowicryl K4M, Epon 812, and Spurr's.(ABSTRACT TRUNCATED AT 250 WORDS)
Mutations in three loci in Dictyostehm discoideum which affect fucosylation are described. Mutations in two of these loci resulted in the simultaneous loss of two separate carbohydrate epitopes. The GA-X epitope, which was competed by L-fucose, was absent in strains carrying a modC324, modD352 or modE353 mutation. These strains exposed a new carbohydrate epitope, competed by N-acetylglucosamine, and the size of several glycoproteins was reduced. A second epitope (GA-XII) was also absent in strains carrying the modC354 or modE353 mutations, reducing the size of the glycoprotein which normally expresses it. Fucose content was reduced in the three mutants, suggesting that each mutation affected a separate step in fucosylation. The lesions did not appear to inhibit synthesis of the underlying carbohydrate, because detergent extracts of mutant vesicles were more active than normal vesicles at transferring [14C]fucose from GDP-[14C]fucose to endogenous acceptor species. The modD352 and modE353 mutant strains incorporated exogenous [3H]fucose poorly, suggesting that lesions in the modD and mod€ genes interfere with the biosynthesis of fucoconjugates downstream from the previously described GDP-fucose synthesis defect of the modC mutation. Intact modE353 mutant vesicles were relatively inefficient in in witm assays, suggesting a global fucosylation defect (which is consistent with the loss of both glycoantigens, GA-X and GA-XII, in this mutant). Finally, the modC324 mutation led to delayed accumulation of slime sheath in witm. The three genetic loci define a fucosylation pathway in D. discoideum comprising defined biochemical steps which contribute to multicellular morphogenesis in this organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.