A successful piston design requires eliminate the following failure modes: structure failure, skirt scuffing and piston unusual noise. It also needs to deliver least friction to improve engine fuel economy and performance. Traditional approach of using hardware tests to validate piston design is technically difficult, costly and time consuming. This paper presents an up-front CAE tool and an analytical process that can systematically address these issues in a timely and costeffectively way.This paper first describes this newly developed CAE process, the 3D virtual modeling and simulation tools used in Ford Motor Company, as well as the piston design factors and boundary conditions. Furthermore, following the definition of the piston design assessment criteria, several piston design studies and applications are discussed, which were used to eliminate skirt scuffing, reduce piston structure dynamic stresses, minimize skirt friction and piston slapping noise. A multi-objective optimal study on piston design is also presented in the end of this paper. In summary, the presented CAE process and tools can be used to identify piston failure modes and optimize piston design parameters so that the best design decisions can be made in early design stage to ensures a durable piston with lowest friction energy loss and sustainable radiate noise level.
The ring-pack lubrication is a complicated physical process involving multiple physical phenomena. This paper presents an attempt to model the ring-pack lubrication in three-dimensional space, considering the ring-bore structure interaction, bore distortion, ring-twist, piston secondary motion, non-Newtonian lubricant behavior, and ring/bore asperity contacts.
The physics of the model includes the interface between the structure of the ring, oil lubricant, and the structure of the cylinder liner. The ring is modeled as a three-dimensional FEA model with the nodes along the ring circumference. The ring face orientation changes circumferentially depending on ring geometry as well as piston tilt angle and three-dimensional ring twist angle at every crank angle degree. The oil lubrication is modeled with the Reynolds equation with shear thinning and temperature dependent oil viscosity and with or without the flow factors. The cylinder liner description allows three-dimensional bore distortion and ring/liner asperity contact to be modelled. The key of the analysis is solving simultaneously at every crank angle increment a set of coupled linear and non-linear equations of ring structure, ring face lubrication, bore distortion, and asperity contact. The model predicts variations of the ring-pack lubrication in the axial and circumferential directions.
Using the hydrodynamic lubrication model coupled with the asperity contact model allows calculations of the friction forces due to asperity contact (boundary and mixed lubrication) and oil film interactions (hydrodynamic and mixed lubrication). The transition from hydrodynamic lubrication to boundary lubrication through mixed lubrication is determined interactively based on ring / liner surface properties, ring loads, and lubrication properties. The new friction sub-module calculates axial and circumferential variation of both types of friction forces as well as total friction. The asperity contact induced friction forces and asperity contact pressure can further be used for ring wear calculations.
The developed model has been applied to determine the performance of a production engine ring-pack. The influence of different phenomena affecting the ring-pack performance has been analyzed and compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.