Single crystal halide perovskites with microscale dimensions are an emerging class of objects for various advanced photonic and optoelectronic applications. Particularly, defect tolerance and broadband tunability of luminescence make them one of the most prospective candidates to develop microlasers for visible range. However, their post‐processing by standard nanolithography methods face a number of problems related to worsening of their properties, thus making gentle laser processing one of best solutions for perovskite patterning. Here, it is shown that femtosecond laser irradiation of single‐crystal halide perovskite CsPbBr3 allows for its precise and ultraclean ablation fully controlled at subwavelength scale by the intensity and polarization distribution of the complex laser field applied. Indeed, the extremely low thermal conductivity (over 300 times lower than that of silicon) and ultrafast thermalization rate makes it possible to reduce heat‐affected zone and avoid melting layer contribution, while the high refractive index (larger than 2) provides high spatial resolution in case of irradiation of pre‐patterned focusing perovskite nanostructures. These features allow for direct imprinting of the incident laser field at wavelength λ = 515 nm, creating micro‐lens and various light‐emitting metasurfaces with deeply subwavelength spatial resolution (down to λ/7).
Halide perovskite nanowire-based lasers have become a powerful tool for modern nanophotonics, being deeply subwavelength in cross-section and demonstrating low-threshold lasing within the whole visible spectral range owing to the huge gain of material even at room temperature. However, their emission directivity remains poorly controlled because of the efficient outcoupling of radiation through their subwavelength facets working as pointlike light sources. Here, we achieve directional lasing from a single perovskite CsPbBr3 nanowire by imprinting a nanograting on its surface, which provides stimulated emission outcoupling to its vertical direction with a divergence angle around 2°. The nanopatterning is carried out by the high-throughput laser ablation method, which preserves the luminescent properties of the material that is typically deteriorated after processing via conventional lithographic approaches. Moreover, nanopatterning of the perovskite nanowire is found to decrease the number of the lasing modes with a 2-fold increase of the quality factor of the remaining modes.
Halide perovskite nanomaterials are widely used in optoelectronics and photonics due to their outstanding luminescent properties, whereas their strong multiphoton absorption makes them prospective for bioimaging. Nonetheless, instability of perovskites in aqueous solutions is an important limitation that prevents their application in biology and medicine. Here, we demonstrate fluorescence and upconversion imaging in living cells by employing CsPbBr 3 nanocrystals (NCs) that show an improved waterresistance (at least for 24 h) after their coating as individual particles with various silicabased shells. The obtained phTEOS-TMOS@CsPbBr 3 NCs possess high quality, which we confirm with high-resolution transmission and scanning transmission electron microscopy, X-ray diffraction analysis, Fourier-transform infrared and energy-dispersive X-ray spectroscopies, as well as with fluorescence optical microscopy. The developed platform can make the halide perovskite NCs suitable for various bioimaging applications.
Exciton-polaritons offer a versatile platform for realization of all-optical integrated logic gates due to the strong effective optical nonlinearity resulting from the exciton–exciton interactions. In most of the current excitonic materials there exists a direct connection between the exciton robustness to thermal fluctuations and the strength of the exciton–exciton interaction, making materials with the highest levels of exciton nonlinearity applicable at cryogenic temperatures only. Here, we show that strong polaronic effects, characteristic for perovskite materials, allow overcoming this limitation. Namely, we demonstrate a record-high value of the nonlinear optical response in the nanostructured organic–inorganic halide perovskite MAPbI3, experimentally detected as a 19.7 meV blueshift of the polariton branch under femtosecond laser irradiation. This is substantially higher than characteristic values for the samples based on conventional semiconductors and monolayers of transition-metal dichalcogenides. The observed strong polaron-enhanced nonlinearity exists for both tetragonal and orthorhombic phases of MAPbI3 and remains stable at elevated temperatures.
Nonlinear optical absorption of light and efficient luminescence in halide perovskites are important photophysical processes, which can be employed for efficient light conversion from infrared into visible, and result in development of microlasers pumped by infrared light, as well as highly efficient broadband upconverters of light. One of the most critical parameters in these processes is the order of nonlinearity, which allows for prediction of the output emission power for various systems. Herein, we show theoretically and experimentally how the order of nonlinearly excited photoluminescence in halide perovskites is governed by an interplay between contributions from free carriers and excitons. Our generalized theoretical model is confirmed by experiments where we reveal a strong dependence of the nonlinearity order in CsPbBr 3 films and nanocrystals on temperature, excitation wavelength, and thickness and size. By incorporating CsPbBr 3 nanocrystals into optically resonant porous calcium carbonate (CaCO 3 ) microspheres, we demonstrate how the developed approach can be applied in nonlinear nanophotonics, where the information about the order of the nonlinearity is crucial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.