We propose a method for the design of an optical element generating the required irradiance distribution in a rectangular area with a large aspect ratio. Application fields include streetlights, the illumination of halls or corridors, and so forth. The design assumes that the optical element has a complex form and contains two refractive surfaces. The first one converts a spherical beam from the light source to a cylindrical beam. The second one transforms an incident cylindrical beam and generates the required irradiance distribution in the target plane. Two optical elements producing a uniform irradiance distribution from a Cree® XLamp® source in rectangular regions of 17 m × 4 m and 17 m × 2 m are designed. The light efficiency of the designed optical element is larger than 83%, whereas the irradiance nonuniformity is less than 9%.
An LED optical element is proposed as an alternative to cold-cathode fluorescent lamps. The optical element generates two symmetric uniformly illuminated line segments on the diffuse reflector. The illuminated segments then act as secondary linear light sources. The calculation of the optical element is reduced to the integration of the system of two explicit ordinary differential equations. The results of the simulation of an illumination system module consisting of a set of optical elements generating a set of line segments on the surface of the diffuse reflector are presented. The elements are located directly on the surface of the reflector. The simulation results demonstrate the uniform illumination of a rectangular area at a distance of 30-40 mm from the light source plane. The lighting efficiency of the designed system exceeds 83%.
We propose a method for designing optical elements with two freeform refracting surfaces generating prescribed non-axisymmetric irradiance distributions in the case of an extended light source. The method is based on the representation of the optical surfaces as bicubic splines and on the subsequent optimization of their parameters using a quasi-Newton method. For the fast calculation of the merit function, we propose an efficient version of the ray tracing method. Using the proposed approach, we design optical elements generating uniform square-shaped irradiance distributions in the far- and near-field. The designed elements are very compact (the height-to-source ratio is only 1.6) and, while providing a high lighting efficiency of 89%, generate highly uniform distributions (the ratio between minimum and average irradiance values in the prescribed square-shaped region exceeds 0.9).
We present the method for computation of highly effective total internal reflection (TIR) optics for LED-based illumination systems. The computation problem is reduced to the integration of several explicit independent first-order differential equations. Two designs of TIR optics are considered and compared: with flat and with aspherical upper surface. The dependence of nonuniformity of generated irradiance distribution on the size of the light source is studied for both designs numerically. It is shown that point source approximation is acceptable in cases when the size of the light source is 5 (or more) times less than the distance to the inner surface of the optical element.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.