The present paper investigates the effect of a mathematical model describing the aforementioned process in which the ambient nanofluid in the presence of suction/injection and magnetic field are taken into consideration. The flow is induced by an infinite elastic sheet which is stretched along its own plane. The stretching/shrinking of the sheet is assumed to be proportional to the distance from the slit. The governing equations are reduced to a nonlinear ordinary differential equation by means of similarity transformation. The consequential nonlinear equation is solved analytically. Consequences show that the flow field can be divided into a near-field region and a far-field region. Suction on the surface plays an important role in the flow development in the near-field whereas the far-field is responsible mainly by stretching. The electromagnetic effect plays exactly the same role as the MHD, which is to reduce the horizontal flow resulting from stretching. It is shown that the behavior of the fluid flow changes with the change of the nanoparticles type. The present study throws light on the analytical solution of a class of laminar boundary layer equations arising in the stretching/shrinking sheet problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.