We have studied the enhancement of luminescence of (CdSe)ZnS core−shell quantum dots on gold colloids as a function of semiconductor nanocrystal−metal nanoparticle distance. Using a layer-by-layer polyelectrolyte deposition technique to insert well-defined spacer layers between gold colloids and quantum dots, a distance-dependent enhancement and quenching of quantum dot photoluminescence has been observed. The maximum enhancement by a factor of 5 is achieved for a 9-layer spacer (≈11 nm). The efficient quantum dot excitation within the locally enhanced electromagnetic field produced by the gold nanoparticles is evidenced by the observation of the surface plasmon resonance in the photoluminescence excitation spectrum of (CdSe)ZnS nanocrystals.
We study the electronic structure of ultrathin zinc-blende two-dimensional (2D)-CdSe nanosheets both theoretically, by Hartree-renormalized k·p calculations including Coulomb interaction, and experimentally, by temperature-dependent and time-resolved photoluminescence measurements. The observed 2D-heavy hole exciton states show a strong influence of vertical confinement and dielectric screening. A very weak coupling to phonons results in a low phonon-contribution to the homogeneous line-broadening. The 2D-nanosheets exhibit much narrower ensemble absorption and emission linewidths as compared to the best colloidal CdSe nanocrystallites ensembles. Since those nanoplatelets can be easily stacked and tend to roll up as they are large, we see a way to form new types of multiple quantum wells and II-VI nanotubes, for example, for fluorescence markers.
Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.
A silver-nanowire cavity is functionalized with CdSe nanocrystals and optimized towards cavity quantum electrodynamics by varying the nanocrystal-nanowire distance d and cavity length L. From the modulation of the nanocrystal emission by the cavity modes a plasmon group velocity of v (gr) approximately 0.5c is derived. Efficient exciton-plasmon-photon conversion and guiding is demonstrated along with a modification in the spontaneous emission rate of the coupled exciton-plasmon system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.