When a plane shock hits a wedge head on, it experiences a reflection-diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time. Experimental, computational, and asymptotic analysis has shown that various patterns of shock reflection may occur, including regular and Mach reflection. However, most of the fundamental issues for shock reflection have not been understood, including the global structure, stability, and transition of the different patterns of shock reflection. Therefore, it is essential to establish the global existence and structural stability of solutions of shock reflection in order to understand fully the phenomena of shock reflection. On the other hand, there has been no rigorous mathematical result on the global existence and structural stability of shock reflection, including the case of potential flow which is widely used in aerodynamics. Such problems involve several challenging difficulties in the analysis of nonlinear partial differential equations such as mixed equations of elliptic-hyperbolic type, free boundary problems, and corner singularity where an elliptic degenerate curve meets a free boundary. In this paper we develop a rigorous mathematical approach to overcome these difficulties involved and establish a global theory of existence and stability for shock reflection by large-angle wedges for potential flow. The techniques and ideas developed here will be useful for other nonlinear problems involving similar difficulties.
The shock reflection problem is one of the most important problems in mathematical fluid dynamics, since this problem not only arises in many important physical situations but also is fundamental for the mathematical theory of multidimensional conservation laws that is still largely incomplete. However, most of the fundamental issues for shock reflection have not been understood, including the regularity and transition of the different patterns of shock reflection configurations. Therefore, it is important to establish the regularity of solutions to shock reflection in order to understand fully the phenomena of shock reflection. On the other hand, for a regular reflection configuration, the potential flow governs the exact behavior of the solution in C 1,1 across the pseudo-sonic circle even starting from the full Euler flow, that is, both of the nonlinear systems are actually the same in an physically significant region near the pseudo-sonic circle; thus, it becomes essential to understand the optimal regularity of solutions for the potential flow across the pseudo-sonic circle (the transonic boundary from the elliptic to hyperbolic region) and at the point where the pseudo-sonic circle (the degenerate elliptic curve) meets the reflected shock (a free boundary connecting the elliptic to hyperbolic region). In this paper, we study the regularity of solutions to regular shock reflection for potential flow. In particular, we prove that the C 1,1 -regularity is optimal for the solution across the pseudo-sonic circle and at the point where the pseudo-sonic circle meets the reflected shock. We also obtain the C 2,α regularity of the solution up to the pseudo-sonic circle in the pseudo-subsonic region. The problem involves two types of transonic flow: one is a continuous transition through the pseudo-sonic circle from the pseudo-supersonic region to the pseudo-subsonic region; the other a jump transition through the transonic shock as a free boundary from another pseudo-supersonic region to the pseudo-subsonic region. The techniques and ideas developed in this paper will be useful to other regularity problems for nonlinear degenerate equations involving similar difficulties.
We establish the existence and stability of multidimensional transonic shocks for the Euler equations for steady potential compressible fluids. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for the velocity, can be written as a second-order, nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential. The transonic shock problem can be formulated into the following free boundary problem: The free boundary is the location of the transonic shock which divides the two regions of smooth flow, and the equation is hyperbolic in the upstream region where the smooth perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem. Our results indicate that there exists a unique solution of the free boundary problem such that the equation is always elliptic in the downstream region and the free boundary is smooth, provided that the hyperbolic phase is close to a uniform flow. We prove that the free boundary is stable under the steady perturbation of the hyperbolic phase. We also establish the existence and stability of multidimensional transonic shocks near spherical or circular transonic shocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.