A rational map f : C → C on the Riemann sphere C is called critically fixed if each critical point of f is fixed under f . In this article we study properties of a combinatorial invariant, called Tischler graph, associated with such a map f . More precisely, we show that the Tischler graph of a critically fixed rational map is always connected, establishing a conjecture made by Kevin Pilgrim. We also discuss the relevance of this result for classical open problems in holomorphic dynamics, such as combinatorial classification problem and global curve attractor problem.
Abstract. Iterated monodromy groups of postcritically-finite rational maps form a rich class of self-similar groups with interesting properties. There are examples of such groups that have intermediate growth, as well as examples that have exponential growth. These groups arise from polynomials. We show exponential growth of the IMG of several non-polynomial maps. These include rational maps whose Julia set is the whole sphere, rational maps with Sierpiński carpet Julia set, and obstructed Thurston maps. Furthermore, we construct the first example of a non-renormalizable polynomial with a dendrite Julia set whose IMG has exponential growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.