Building bowls: An effective intramolecular aryl–aryl coupling is the key step in rational fullerene synthesis and in synthesis of extended buckybowl structures. Such a process can be embodied very efficiently through quantitative HF elimination on active Al2O3. The process is characterized by an unprecedentedly high chemoselectivity and regiospecificity.
The 3+3‐type synthesis of a pyrazole‐based expanded porphyrin 22 H4, a hexaphyrin analogue named Siamese‐twin porphyrin, and its homobimetallic diamagnetic nickel(II) and paramagnetic copper(II) complexes, 22 Ni2 and 22 Cu2, are described. The structure of the macrocycle composed of four pyrroles and two pyrazoles all linked by single carbon atoms, can be interpreted as two conjoined porphyrin‐like subunits, with the two opposing pyrazoles acting as the fusion points. Variable‐temperature 1D and 2D NMR spectroscopic analyses suggested a conformationally flexible structure for 22 H4. NMR and UV/Vis spectroscopic evidence as well as structural parameters proved the macrocycle to be non‐aromatic, though each half of the molecule is fully conjugated. UV/Vis and NMR spectroscopic titrations of the free base macrocycle with acid showed it to be dibasic. In the complexes, each metal ion is coordinated in a square‐planar fashion by a dianionic, porphyrin‐like {N4} binding pocket. The solid‐state structures of the dication and both metal complexes were elucidated by single‐crystal diffractometry. The conformations of the three structures are all similar to each other and strongly twisted, rendering the molecules chiral. The persistent helical twist in the protonated form of the free base and in both metal complexes permitted resolution of these enantiomeric helimers by HPLC on a chiral phase. The absolute stereostructures of 22 H62+, 22 Ni2, and 22 Cu2 were assigned by a combination of experimental electronic circular dichroism (ECD) investigations and quantum‐chemical ECD calculations. The synthesis of the first member of this long‐sought class of expanded porphyrin‐like macrocycles lays the foundation for the study of the interactions of the metal centers within their bimetallic complexes.
We fabricate and characterize vertical molecular junctions consisting of self-assembled monolayers of diarylethene (DAE) contacted by a multilayer graphene (MLG) electrode on the top and gold on the bottom. The DAE molecular junctions show two stable electrical states, a closed state (high conductance) or an open state (low conductance), which are created upon illumination with UV or visible light, respectively. For the Au-DAE-MLG junction structure, we observe that the current levels between the two conductance states are separated by 2 orders of magnitude. However, in a real-time measurement, we observe only unidirectional switching behavior from the open to the closed state.
Wrap up: A specially fluorinated C60 fullerene precursor (see figure) was converted to the target C60 cage by laser ionization, resulting in highly selective HF elimination without any detectable side reactions or undesired fragmentation. The fully selective transformation to the target fullerene has been unambiguously demonstrated from a 13C‐labeled precursor. In general the findings open new horizons for the synthesis of carbon‐based nanomaterials, which cannot be obtained by any conventional alternative method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.