AimsStrain artefacts are known to hamper the correct interpretation of segmental strain and strain-rate (S/SR). Defining the normal ranges of myocardial segmental deformation is important in clinical studies and routine echocardiographic practice. In order to define artefact-free normal ranges for segmental longitudinal S/SR parameters, we investigated the extent to which different types of artefacts and their segmental localisation in the three different myocardial layers created a bias in the results of echocardiographic strain measurements.MethodsThe study included echocardiograms from men and women aged 40–69 years from two population-based studies, namely the Know Your Heart study (Russia) and the Tromsø Study (Norway). Of the 2207 individuals from these studies, 840 had normal results, defined as the absence of hypertension or indicators of any cardiovascular disease. Two-dimensional (2D) global and segmental S/SR of the three myocardial layers were analysed using speckle tracking echocardiography. Artefacts were assessed with two different methods: visual identification of image-artefacts and a novel conceptual approach of ‘curve-artefacts’ or unphysiological strain-curve formation.ResultsSegmental strain values were found to have significantly reduced in the presence of strain-curve artefacts (14.9%±5.8% towards −20.7%±4.9%), and increased with the foreshortening of the 2D image. However, the individual global strain values were not substantially altered by discarding segmental artefacts. Reduction due to artefacts was observed in all segments, layers, systolic and diastolic strain, and SR. Thus, we presented normal ranges for basal-septal, basal, medial and apical segment groups after excluding artefacts.ConclusionStrain-curve artefacts introduce systematic errors, resulting in reduced segmental S/SR values. In terms of artefact-robust global longitudinal strain, the detection of curve-artefacts is crucial for the correct interpretation of segmental S/SR patterns. Intersegmental S/SR gradients and artefacts need to be considered for the correct definition of normalcy and pathology.
Background Left ventricular (LV) systolic and diastolic functions are important cardiovascular risk predictors in patients with hypertension. However, data on segmental, layer‐specific strain, and diastolic strain rates in these patients are limited. The aim of this study was to investigate segmental two‐dimensional strain rate imaging (SRI)‐derived parameters to characterize LV systolic and diastolic function in hypertensive individuals compared with that in normotensive individuals. Methods The study sample comprised 1194 participants from the population‐based Know Your Heart study in Arkhangelsk and Novosibirsk, Russia, and 1013 individuals from the Seventh Tromsø Study in Norway. The study population was divided into four subgroups: (A) healthy individuals with normal blood pressure (BP), (B) individuals on antihypertensive medication with normal BP, (C) individuals with systolic BP 140–159 mmHg and/or diastolic BP > 90 mm HG, and (D) individuals with systolic BP ≥160 mmHg. In addition to conventional echocardiographic parameters, global and segmental layer‐specific strains and strain rates in early diastole and atrial contraction (SR E, SR A) were extracted. The strain and SR (S/SR) analysis included only segments without strain curve artifacts. Results With increasing BP, the systolic and diastolic global and segmental S/SR gradually decreased. SR E, a marker of impaired relaxation, showed the most distinctive differences between the groups. In normotensive controls and the three hypertension groups, all segmental parameters displayed apico‐basal gradients, with the lowest S/SR in the basal septal and highest in apical segments. Only SR A did not differ between the segmental groups but increased gradually with increasing BP. End‐systolic strain showed incremental epi‐towards endocardial gradients, irrespective of the study group. Conclusion Arterial hypertension reduces global and segmental systolic and diastolic left ventricular S/SR parameters. Impaired relaxation determined by SR E is the dominant factor of diastolic dysfunction, whereas end‐diastolic compliance (by SR A) does not seem to be influenced by different degrees of hypertension. Segmental strain, SR E and SR A provide new insights into the LV cardio mechanics in hypertensive hearts.
ObjectiveThe aim of the study is to assess changes in heart structure and function associated with heavy alcohol use by comparing echocardiographic indices in a population-based sample to those in patients admitted to an inpatient facility with severe alcohol problems.Methods and resultsWe used data from the Know Your Heart study (2015–2017) which is a cross-sectional study that recruited 2479 participants aged 35–69 years from the general population of the city of Arkhangelsk in Northwest Russia and 278 patients from the Arkhangelsk Regional Psychiatric Hospital with a primary diagnosis related to chronic alcohol use (narcology clinic subsample). The drinking patterns of the population-based sample were characterised in detail. We used regression models controlling for age, sex, smoking, education and waist to hip ratio to evaluate the differences in echocardiographic indices in participants with different drinking patterns. The means of left ventricular end-diastolic diameter and indexed left atrial systolic diameter were increased among heavy drinkers (narcology clinic subsample), while mean left ventricular ejection fraction was decreased in this group compared with the population-based sample. In contrast, the harmful and hazardous drinkers in the population-based sample did not differ from non-problem drinkers with respect to echocardiographic indices of systolic and diastolic function.ConclusionsExtremely heavy drinking is associated with a specific set of structural and functional abnormalities of the heart that may be regarded as precursors of alcohol-related dilated cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.