Proteomes are characterized by large protein-abundance differences, cell-type- and time-dependent expression patterns and post-translational modifications, all of which carry biological information that is not accessible by genomics or transcriptomics. Here we present a mass-spectrometry-based draft of the human proteome and a public, high-performance, in-memory database for real-time analysis of terabytes of big data, called ProteomicsDB. The information assembled from human tissues, cell lines and body fluids enabled estimation of the size of the protein-coding genome, and identified organ-specific proteins and a large number of translated lincRNAs (long intergenic non-coding RNAs). Analysis of messenger RNA and protein-expression profiles of human tissues revealed conserved control of protein abundance, and integration of drug-sensitivity data enabled the identification of proteins predicting resistance or sensitivity. The proteome profiles also hold considerable promise for analysing the composition and stoichiometry of protein complexes. ProteomicsDB thus enables navigation of proteomes, provides biological insight and fosters the development of proteomic technology.
In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Fung et al., 2015), that described how we intended to replicate selected experiments from the paper "Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia" (Dawson et al.
The thermal stability of proteins can be used to assess ligand binding in living cells. We have generalized this concept by determining the thermal profiles of more than 7000 proteins in human cells by means of mass spectrometry. Monitoring the effects of small-molecule ligands on the profiles delineated more than 50 targets for the kinase inhibitor staurosporine. We identified the heme biosynthesis enzyme ferrochelatase as a target of kinase inhibitors and suggest that its inhibition causes the phototoxicity observed with vemurafenib and alectinib. Thermal shifts were also observed for downstream effectors of drug treatment. In live cells, dasatinib induced shifts in BCR-ABL pathway proteins, including CRK/CRKL. Thermal proteome profiling provides an unbiased measure of drug-target engagement and facilitates identification of markers for drug efficacy and toxicity.
The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.
The direct detection of drug-protein interactions in living cells is a major challenge in drug discovery research. Recently, we introduced an approach termed thermal proteome profiling (TPP), which enables the monitoring of changes in protein thermal stability across the proteome using quantitative mass spectrometry. We determined the intracellular thermal profiles for up to 7,000 proteins, and by comparing profiles derived from cultured mammalian cells in the presence or absence of a drug we showed that it was possible to identify direct and indirect targets of drugs in living cells in an unbiased manner. Here we demonstrate the complete workflow using the histone deacetylase inhibitor panobinostat. The key to this approach is the use of isobaric tandem mass tag 10-plex (TMT10) reagents to label digested protein samples corresponding to each temperature point in the melting curve so that the samples can be analyzed by multiplexed quantitative mass spectrometry. Important steps in the bioinformatic analysis include data normalization, melting curve fitting and statistical significance determination of compound concentration-dependent changes in protein stability. All analysis tools are made freely available as R and Python packages. The workflow can be completed in 2 weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.