Structure-from-Motion (SfM) applications attempt to reconstruct the three-dimensional (3D) geometry of an underlying scene from a collection of images, taken from various camera viewpoints. Traditional optimization techniques in SfM, which compute and refine camera poses and 3D structure, rely only on feature tracks, or sets of corresponding pixels, generated from color (RGB) images. With the abundance of reliable depth sensor information, these optimization procedures can be augmented to increase the accuracy of reconstruction. This paper presents a general cost function, which evaluates the quality of a reconstruction based upon a previously established angular cost function and depth data estimates. The cost function takes into account two error measures: first, the angular error between each computed 3D scene point and its corresponding feature track location, and second, the difference between the sensor depth value and its computed estimate. A bundle adjustment parameter optimization is implemented using the proposed cost function and evaluated for accuracy and performance. As opposed to traditional bundle adjustment, in the event of feature tracking errors, a corrective routine is also present to detect and correct inaccurate feature tracks. The filtering algorithm involves clustering depth estimates of the same scene point and observing the difference between the depth point estimates and the triangulated 3D point. Results on both real and synthetic data are presented and show that reconstruction accuracy is improved.
Abstract-We introduce a method for creating very dense reconstructions of datasets, particularly turn-table varieties. The method takes in initial reconstructions (of any origin) and makes them denser by interpolating depth values in two-dimensional image space within a superpixel region and then optimizing the interpolated value via image consistency analysis across neighboring images in the dataset. One of the core assumptions in this method is that depth values per pixel will vary gradually along a gradient for a given object. As such, turntable datasets, such as the dinosaur dataset, are particularly easy for our method. Our method modernizes some existing techniques and parallelizes them on a GPU, which produces results faster than other densification methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.