Mobilization of suitable amounts of PBSCs with granulocyte-CSF (G-CSF) can be difficult in children. We report the results of using plerixafor in pediatric patients who failed to mobilize progenitors with G-CSF-based regimens. Thirty-three patients, median age 9 years (range 1-18 years) and median weight 29 kg (range 10-85 kg) were enrolled into the study. After 4 days of G-CSF stimulation, the median CD34+ cell count in peripheral blood was 10.4 per μL (range 0.27-23.0 per μL). Plerixafor was administered subcutaneously (0.24 μg/kg in 30 patients and 0.3 μg/kg in 3 patients) 11-12 h before apheresis. At the time of apheresis, CD34+ cell counts increased to a median of 44.1 per μL (range 8.4-357.0 per μL), a median 4.4-fold increase. Two patients (6%) failed to mobilize. Thirty-one patients underwent apheresis and in 27 42 × 10 6 CD34+ cells per kg of body weight were collected after one procedure. In total, 31 of 33 patients mobilized successfully and the median number of cryopreserved CD34+ cells was 5.6 × 10 6 /kg body weight (2.7 × 10 6 -27.4 × 10 6 ). Twenty-four patients underwent transplantation. Engraftment was achieved in all but one patient, who died on day +9 after hematopoietic stem cell transplantation. The median time of neutrophil and platelet recovery was day +12 and +16, respectively. Our study confirms that plerixafor has impressive efficacy and very modest toxicity in children.
BackgroundNijmegen breakage syndrome (NBS) is a combined primary immunodeficiency with DNA repair defect, microcephaly, and other phenotypical features. It predominantly occurs in Slavic populations that have a high frequency of carriers with the causative NBN gene c.657_661del5 mutation. Due to the rarity of the disease in the rest of the world, studies of NBS patients are few. Here, we report a prospective study of a cohort of Russian NBS patients.Methods35 Russian NBS patients of ages 1–19 years, referred to our Center between years 2012 and 2016, were prospectively studied.ResultsDespite the fact that in 80% of the patients microcephaly was diagnosed at birth or shortly thereafter, the average delay of NBS diagnosis was 6.5 years. Though 80% of the patients had laboratory signs of immunodeficiency, only 51% of the patients experienced significant infections. Autoimmune complications including interstitial lymphocytic lung disease and skin granulomas were noted in 34%, malignancies—in 57% of the patients. T-cell excision circle (TREC)/kappa-deleting recombination excision circle (KREC) levels were low in the majority of patients studied. Lower KREC levels correlated with autoimmune and oncological complications. Fifteen patients underwent hematopoietic stem cell transplantation (HSCT), 10 of them were alive and well, with good graft function. Three patients in the HSCT group and five non-transplanted patients died; tumor progression being the main cause of death. The probability of the overall survival since NBS diagnosis was 0.76 in the HSCT group and 0.3 in the non-transplanted group.ConclusionBased on our findings of low TRECs in most NBS patients, independent of their age, TREC detection can be potentially useful for detection of NBS patients during neonatal screening. KREC concentration can be used as a prognostic marker of disease severity. HSCT is a viable treatment option in NBS and should be especially considered in patients with low KREC numbers early on, before development of life-threatening complications.
Anti-CD19 chimeric antigen receptor T (CAR-T) cells have demonstrated activity against relapsed/refractory lymphomas. Cytokine release syndrome (CRS) and immune effector cell – associated neurotoxicity syndrome (ICANS) are well-known complications. Tocilizumab, a monoclonal antibody targeting the interleukin-6 (IL-6) receptor was administered 1 hour prior to infusion of anti-CD19 CAR-T cells with CD3ζ/4-1BB costimulatory signaling used to treat non-Hodgkin lymphoma patients. Relapsed/refractory lymphoma patients treated with anti-CD19 CAR-T cells were included in this analysis. Cytokine plasma levels were measured by electrochemiluminescence before lymphodepleting chemotherapy, prior to infusion and then on days 2, 4,6, and 14 days after treatment. Twenty patients were treated. Cell products included locally manufactured anti-CD19 CAR-T (n=18) and tisagenlecleucel (n=2). There were no adverse events attributed to tocilizumab. Ten patients had grade 1–2 CRS at a median of 4 (range 3-7) days. There were no cases of grade ≥3 CRS. Five patients had ICANS, grade 1 (n=4) and grade 4 (n=1). Laboratory studies obtained prior to lymphodepleting chemotherapy were comparable between patients with and without CRS, except for interleukin (IL)-15 plasma concentrations. patients with CRS had higher post-infusion ferritin and C reactive protein, with more marked increases in inflammatory cytokines, including IL-6, IL-15, IFN-γ, fractalkine and MCP-1. Fifteen patients (75%) achieved CR and 2 (10%), PR. One-year OS and PFS estimates were 83% and 73%. Prophylactic tocilizumab was associated with low CRS incidence and severity. There were no adverse events associated with tocilizumab, no increase in frequency or severity of ICANS and excellent disease control and overall survival.
The development of chimeric antigen receptor (CAR) T cell therapy has become a critical milestone in modern oncotherapy. Despite the remarkable in vitro effectiveness, the problem of safety and efficacy of CAR T cell therapy against solid tumors is challenged by the lack of tumor-specific antigens required to avoid on-target off-tumor effects. Spatially separating the cytotoxic function of CAR T cells from tumor antigen recognition provided by protein mediators allows for the precise control of CAR T cell cytotoxicity. Here, the high affinity and capability of the bacterial toxin-antitoxin barnase-barstar system were adopted to guide CAR T cells to solid tumors. The complementary modules based on ( 1 ) ankyrin repeat (DARPin)-barnase proteins and ( 2 ) barstar-based CAR (BsCAR) were designed to provide switchable targeting to tumor cells. The alteration of the DARPin-barnase switches enabled the targeting of different tumor antigens with a single BsCAR. A gradual increase in cytokine release and tunable BsCAR T cell cytotoxicity was achieved by varying DARPin-barnase loads. Switchable BsCAR T cell therapy was able to eradicate the HER2 + ductal carcinoma in vivo. Guiding BsCAR T cells by DARPin-barnase switches provides a universal approach for a controlled multitargeted adoptive immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.