The 35 kDa water-soluble Orange Carotenoid Protein (OCP) is responsible for photoprotection in cyanobacteria. It acts as a light intensity sensor that simultaneously serves as efficient quencher of phycobilisome excitation energy as well as of reactive oxygen species. Photoactivation triggers largescale conformational rearrangements to convert OCP from the orange OCP O state to the red active signaling state OCP R , as demonstrated by various structural methods. Eventually, such rearrangements imply complete yet reversible separation of structural domains (C-and N-terminal domain) and significant translocation of the carotenoid cofactor. Very recently, dynamic crystallography of OCP O crystals suggested the existence of photocycle intermediates with small-scale rearrangements that may trigger further transitions in the protein. However, the currently existing gap between the ultra-fast picosecond and 100 millisecond time scale of spectroscopic and structural data precludes knowledge about distinct intermediate states. In this study, we took advantage of single 7 ns laser pulses to study peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/167478 doi: bioRxiv preprint first posted online Jul. 23, 2017; 2 carotenoid absorption transients in OCP on the time-scale from 100 ns to 10 s, which allowed us to detect a red intermediate state preceding the red signaling state OCP R . In addition, time-resolved fluorescence spectroscopy and following assignment of carotenoid-induced quenching of different tryptophan residues revealed a novel orange intermediate state, which appears during back-relaxation of photoactivated OCP R to OCP O . Our results show asynchronous changes in the carotenoid and protein components and provide refined mechanistic information about the OCP photocycle as well as introduce new kinetic signatures for future studies of OCP photoactivity and photoprotection.
SignificanceNeurotrophin receptors are a class of receptor tyrosine kinases that couple to signaling pathways critical for neuronal survival and growth. One member, TrkB, is particularly interesting because it plays a role in many severe degenerative neurological diseases. The TrkB natural ligand brain-derived neurotrophic factor (BDNF) is not suitable to be developed as a drug or therapy as proved by previous unsuccessful clinical trials. Here we report a selection method that produced potent full agonist antibodies that mimic BDNF function, yet with better biophysical properties. This study paves the road for the development of agonist antibodies for other receptor tyrosine kinases.
COVID-19 pandemic caused by SARS-CoV-2 constitutes a global public health crisis with enormous economic consequences. Monoclonal antibodies against SARS-CoV-2 can provide an important treatment option to fight COVID-19, especially for the most vulnerable populations. In this work, potent antibodies binding to SARS-CoV-2 Spike protein were identified from COVID-19 convalescent patients. Among them, P4A1 interacts directly with and covers majority of the Receptor Binding Motif of the Spike Receptor-Binding Domain, shown by high-resolution complex structure analysis. We further demonstrate the binding and neutralizing activities of P4A1 against wild type and mutant Spike proteins or pseudoviruses. P4A1 was subsequently engineered to reduce the potential risk for Antibody-Dependent Enhancement of infection and to extend its half-life. The engineered antibody exhibits an optimized pharmacokinetic and safety profile, and it results in complete viral clearance in a rhesus monkey model of COVID-19 following a single injection. These data suggest its potential against SARS-CoV-2 related diseases.
SummaryApart from energy generation, mitochondria perform a signalling function determining the life and death of a cell under stress exposure. In the present study we have explored patterns of heat-induced synthesis of Hsp101, Hsp70, Hsp17.6 (class I), Hsp17.6 (class II) and Hsp60, and the development of induced thermotolerance in Arabidopsis thaliana cell culture under conditions of mitochondrial dysfunction. It was shown that treatment by mitochondrial inhibitors and uncouplers at the time of mild heat shock downregulates HSP synthesis, which is important for induced thermotolerance in plants. The exposure to elevated temperature induced an increase in cell oxygen consumption and hyperpolarization of the inner mitochondrial membrane. Taken together, these facts suggest that mitochondrial functions are essential for heat-induced HSP synthesis and development of induced thermotolerance in A. thaliana cell culture, suggesting that mitochondrialnuclear cross-talk is activated under stress conditions. Treatment of Arabidopsis cell culture at 50°C initiates a programmed cell death determined by the time course of viability decrease, DNA fragmentation and cytochrome c release from mitochondria. As treatment at 37°C protected Arabidopsis cells from heat-induced cell death, it may be suggested that Hsp101, Hsp70 and small heat-shock proteins, the synthesis of which is induced under these conditions, are playing an anti-apoptotic role in the plant cell. On the other hand, drastic heat shock upregulated mitochondrial Hsp60 synthesis and induced its release from mitochondria to the cytosol, indicating a pro-apoptotic role of plant Hsp60.
To counteract oxidative stress, antioxidants including carotenoids are highly promising, yet their exploitation is drastically limited by the poor bioavailability and fast photodestruction, whereas current delivery systems are far from being efficient. Here we demonstrate that the recently discovered nanometer-sized water-soluble carotenoprotein from Anabaena sp. PCC 7120 (termed AnaCTDH) transiently interacts with liposomes to efficiently extract carotenoids via carotenoid-mediated homodimerization, yielding violet–purple protein samples. We characterize the spectroscopic properties of the obtained pigment–protein complexes and the thermodynamics of liposome–protein carotenoid transfer and demonstrate the delivery of carotenoid echinenone from AnaCTDH into liposomes with an efficiency of up to 70 ± 3%. Most importantly, we show efficient carotenoid delivery to membranes of mammalian cells, which provides protection from reactive oxygen species (ROS). Incubation of neuroblastoma cell line Tet21N in the presence of 1 μM AnaCTDH binding echinenone decreased antimycin A ROS production by 25% (p < 0.05). The described carotenoprotein may be considered as part of modular systems for the targeted antioxidant delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.