The 35 kDa water-soluble Orange Carotenoid Protein (OCP) is responsible for photoprotection in cyanobacteria. It acts as a light intensity sensor that simultaneously serves as efficient quencher of phycobilisome excitation energy as well as of reactive oxygen species. Photoactivation triggers largescale conformational rearrangements to convert OCP from the orange OCP O state to the red active signaling state OCP R , as demonstrated by various structural methods. Eventually, such rearrangements imply complete yet reversible separation of structural domains (C-and N-terminal domain) and significant translocation of the carotenoid cofactor. Very recently, dynamic crystallography of OCP O crystals suggested the existence of photocycle intermediates with small-scale rearrangements that may trigger further transitions in the protein. However, the currently existing gap between the ultra-fast picosecond and 100 millisecond time scale of spectroscopic and structural data precludes knowledge about distinct intermediate states. In this study, we took advantage of single 7 ns laser pulses to study peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/167478 doi: bioRxiv preprint first posted online Jul. 23, 2017; 2 carotenoid absorption transients in OCP on the time-scale from 100 ns to 10 s, which allowed us to detect a red intermediate state preceding the red signaling state OCP R . In addition, time-resolved fluorescence spectroscopy and following assignment of carotenoid-induced quenching of different tryptophan residues revealed a novel orange intermediate state, which appears during back-relaxation of photoactivated OCP R to OCP O . Our results show asynchronous changes in the carotenoid and protein components and provide refined mechanistic information about the OCP photocycle as well as introduce new kinetic signatures for future studies of OCP photoactivity and photoprotection.
Carotenoids are lipophilic substances with many biological functions, from coloration to photoprotection. Being potent antioxidants, carotenoids have multiple biomedical applications, including the treatment of neurodegenerative disorders and retina degeneration. Nevertheless, the delivery of carotenoids is substantially limited by their poor solubility in the aqueous phase. Natural water-soluble carotenoproteins can facilitate this task, necessitating studies on their ability to uptake and deliver carotenoids. One such promising carotenoprotein, AstaP (Astaxanthin-binding protein), was recently identified in eukaryotic microalgae, but its structure and functional properties remained largely uncharacterized. By using a correctly folded recombinant protein, here we show that AstaP is an efficient carotenoid solubilizer that can stably bind not only astaxanthin but also zeaxanthin, canthaxanthin, and, to a lesser extent, β-carotene, i.e. carotenoids especially valuable to human health. AstaP accepts carotenoids provided as acetone solutions or embedded in membranes, forming carotenoid-protein complexes with an apparent stoichiometry of 1:1. We successfully produced AstaP holoproteins in specific carotenoid-producing strains of Escherichia coli, proving it is amenable to cost-efficient biotechnology processes. Regardless of the carotenoid type, AstaP remains monomeric in both apo- and holoforms, while its rather minimalistic mass (∼20 kDa) makes it an especially attractive antioxidant delivery module. In vitro, AstaP transfers different carotenoids to the liposomes and to unrelated proteins from cyanobacteria, which can modulate their photoactivity and/or oligomerization. These findings expand the toolkit of the characterized carotenoid-binding proteins and outline the perspective of the use of AstaP as a unique monomeric antioxidant nanocarrier with an extensive carotenoid-binding repertoire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.