We reverse-engineer, test and analyse hardware and firmware of the commercial quantum-optical random number generator Quantis from ID Quantique. We show that $>99\%$
>
99
%
of its output data originates in physically random processes: random timing of photon absorption in a semiconductor material, and random growth of avalanche owing to impact ionisation. Under a strong assumption that these processes correspond to a measurement of an initially pure state of the components, our analysis implies the unpredictability of the generated randomness. We have also found minor non-random contributions from imperfections in detector electronics and an internal processing algorithm, specific to this particular device. Our work shows that the design quality of a commercial quantum-optical randomness source can be verified without cooperation of the manufacturer and without access to the engineering documentation.
Quantum communication protocols are considered secure provided that all devices included in the system are fully characterized, and side channels are closed. However, as a result of laser radiation exposure, it is possible to change quantum communication systems components' characteristics. This leads to vulnerabilities appearing in the quantum key distribution system. In this paper, we consider the effect of pulsed laser radiation on fiber-optic isolators used in quantum communication systems. Isolators protect the source of the system from attacking optical radiation coming from the "eavesdropping" side via the quantum channel. Lowering the isolation factor can bring the entire system out of a secure state. This gives an eavesdropper access to information about the secret key. The scenario of the most probable attack to the source of the quantum key distribution system via a pulsed laser was simulated. The experimental setup provided exposure of fiber isolators with pulsed laser radiation at a wavelength of 1064 nm (within the transparency window of the isolators) with a mean power up to 840 mW in four different pulse generation modes. The isolation factor and throughput of tested samples were monitored using a laser diode with a wavelength of 1550 nm and average power of 10.5 mW. Spectrally selective splitters were used to separate the lasers. It is shown that the isolation factor (isolator attenuation in the direction from the quantum channel to the system) at a wavelength of 1550 nm decreases from the initial value of 59.1 dB to 24.5 dB. The throughput (in the direction from the system to the quantum channel) at the same wavelength decreases from 0.6 dB to 1.2-12.3 dB or remains the same, depending on the acting pulsed laser radiation parameters. Temperature monitoring showed that the temperature of the isolator body changes insignificantly when
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.