Since more than 15 years, the Cluster mission passes through Earth's radiation belts at least once every 2 days for several hours, measuring the electron intensity at energies from 30 to 400 keV. These data have previously been considered not usable due to contamination caused by penetrating energetic particles (protons at >100 keV and electrons at >400 keV). In this study, we assess the level of distortion of energetic electron spectra from the Research with Adaptive Particle Imaging Detector (RAPID)/Imaging Electron Spectrometer (IES) detector, determining the efficiency of its shielding. We base our assessment on the analysis of experimental data and a radiation transport code (Geant4). In simulations, we use the incident particle energy distribution of the AE9/AP9 radiation belt models. We identify the Roederer L values, L⋆, and energy channels that should be used with caution: at 3≤L⋆≤4, all energy channels (40–400 keV) are contaminated by protons (≃230 to 630 keV and >600 MeV); at L⋆≃1 and 4–6, the energy channels at 95–400 keV are contaminated by high‐energy electrons (>400 keV). Comparison of the data with electron and proton observations from RBSP/MagEIS indicates that the subtraction of proton fluxes at energies ≃ 230–630 keV from the IES electron data adequately removes the proton contamination. We demonstrate the usefulness of the corrected data for scientific applications.
<p>Silicon detectors are widely used for analyses of particles/radiation in space. They show a good response for a wide spectrum of different particles. Via construction of an appropriate shielding, one can select and analyze only a single sort of particles/their energy and suppress detection of particles of all other kinds. It is difficult to find a good solution for shielding only experimentally. A modeling software such as Geant4 allows us to find a solution for the shielding. This software calculates interaction of particles with shielding or detector and the resulting energy deposition.</p> <p>The current work is based on modeling of aluminum shielding of the RAPID/IES instrument on board of four Cluster spacecrafts. Since 2000 Cluster mission encounters the Earth's radiation belts and measures energetic electrons among other particles, waves and electromagnetic fields. Accurate modeling using Geant4 allows us to filter unwanted particles out of the result and possibly remove some artifacts in space.</p> <p>The Geant4 code calculates an attenuation of radiation. Preliminary this software does not calculate electrical signal. There is, however, a possibility to extend the code and add other functionalities. We are exploring possibilities to include signal processing in the Geant4 code for the detector, analog and digital processing units.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.