A study of long‐lived spin order in chlorothiophene carboxylates at both high and low magnetic fields is presented. Careful sample preparation (removal of dissolved oxygen in solution, chelating of paramagnetic impurities, reduction of convection) allows one to obtain very long‐lived singlet order of the two coupled protons in chlorothiophene derivatives, having lifetimes of about 130 s in D2O and 240 s in deuterated methanol, which are much longer than the T1‐relaxation times (18 and 30 s, respectively, at a field B0
=9.4 T). In protonated solvents the relaxation times become shorter, but the lifetime is still substantially longer than T1
. In addition, long‐lived coherences are shown to have lifetimes as long as 30 s. Thiophene derivatives can be used as molecular tags to study slow transport, slow dynamics and slow chemical processes, as has been shown in recent years.
Previous transient absorption measurements using the magnetically affected reaction yield (MARY) technique for a series of rigidly linked electron donor/electron acceptor dyads (D-X-A) consisting of a triarylamine donor, a naphthalene diimide acceptor, and a meta-conjugated diethynylbenzene unit as a bridge had revealed the presence of electronic exchange interaction, J, in the photoexcited charge separated (CS) state. Here, we present results obtained by photochemically induced dynamic nuclear polarization (photo-CIDNP) that allows for determining the sign of J. By variation of the magnetic field from 1 mT to 9.4 T, pronounced absorptive maxima of CIDNP were detected for more than 20 1H nuclei disregarding the sign of their hyperfine coupling constants in the transient charge separated state, with positions of maxima close to those found by the MARY technique. Quantitative comparison of the observed CIDNP signals for various D-X-A dyads reveals an increase in the CIDNP enhancement factor with increasing population of the triplet state determined by MARY spectroscopy at zero magnetic field. For CIDNP of the methyl groups of the TAA donor dyads, we found in all studies a good linear dependence between the CIDNP signal amplitude and the initial population of the CS triplet state. The linear relationship together with the absorptive CIDNP allows us to conclude that (i) the sign of the electronic exchange interaction Jex is positive, (ii) CIDNP is formed predominantly in the vicinity of level anticrossing between the T+ and S electronic levels, and (iii) coherent triplet-singlet transitions are induced by hyperfine interaction and accompanied by simultaneous electron and nuclear spin flip, T+β→Sα.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.