Evaluation of cognitive workload finds its application in many areas, from educational program assessment through professional driver health examination to monitoring the mental state of people carrying out jobs of high responsibility, such as pilots or airline traffic dispatchers. Estimation of multilevel cognitive workload is a task usually realized in a subject-dependent way, while the present research is focused on developing the procedure of subject-independent evaluation of cognitive workload level. The aim of the paper is to estimate cognitive workload level in accordance with subject-independent approach, applying classical machine learning methods combined with feature selection techniques. The procedure of data acquisition was based on registering the EEG signal of the person performing arithmetical tasks divided into six intervals of advancement. The analysis included the stages of preprocessing, feature extraction, and selection, while the final step covered multiclass classification performed with several models. The results discussed show high maximal accuracies achieved: ~91% for both the validation dataset and for the cross-validation approach for kNN model.
The paper is focussed on the assessment of cognitive workload level using selected machine learning models. In the study, eye-tracking data were gathered from 29 healthy volunteers during examination with three versions of the computerised version of the digit symbol substitution test (DSST). Understanding cognitive workload is of great importance in analysing human mental fatigue and the performance of intellectual tasks. It is also essential in the context of explanation of the brain cognitive process. Eight three-class classification machine learning models were constructed and analysed. Furthermore, the technique of interpretable machine learning model was applied to obtain the measures of feature importance and its contribution to the brain cognitive functions. The measures allowed improving the quality of classification, simultaneously lowering the number of applied features to six or eight, depending on the model. Moreover, the applied method of explainable machine learning provided valuable insights into understanding the process accompanying various levels of cognitive workload. The main classification performance metrics, such as F1, recall, precision, accuracy, and the area under the Receiver operating characteristic curve (ROC AUC) were used in order to assess the quality of classification quantitatively. The best result obtained on the complete feature set was as high as 0.95 (F1); however, feature importance interpretation allowed increasing the result up to 0.97 with only seven of 20 features applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.