Respiration-dependent responses of a pH probe (fluorescein isothiocyanate, FITC), covalently bound to the membrane proteins of mitochondria and submitochondrial particles (SMP) have been studied. A spectral shift indicating FITC deprotonation was observed when respiration was activated in coupled mitochondria. Such a response was increased by valinomycin and reduced by uncoupler. Some FITC deprotonation was detected in the presence of excess of an uncoupler, but the response was smaller and insensitive to valinomycin. FITC deprotonation was also observed in submitochondrial particles after succinate addition. In this case it was not affected by uncoupler. Increase in the buffer concentration was found to (i) decrease the FITC response and (ii) increase the rate of uncoupled respiration in both mitochondria and submitochondrial particles. The results are consistent with the assumption that respiration initiates appearance of local H + activity gradients on the inner side of the internal mitochondrial membrane during the steady-state H + pumping. We suggest that the formation of this gradient is due to kinetic barrier to proton transfer from the bulk phase to the respiratory proton pump vicinity.z 1998 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.