Opportunistic bacteria Staphylococcus aureus and Staphylococcus epidermidis often form rigid biofilms on tissues and inorganic surfaces. In the biofilm bacterial cells are embedded in a self-produced polysaccharide matrix and thereby are inaccessible to biocides, antibiotics, or host immune system. Here we show the antibacterial activity of newly synthesized cationic biocides, the quaternary ammonium, and bisphosphonium salts of pyridoxine (vitamin B6) against biofilm-embedded Staphylococci. The derivatives of 6-hydroxymethylpyridoxine were ineffective against biofilm-embedded S. aureus and S. epidermidis at concentrations up to 64 μg/mL, although all compounds tested exhibited low MICs (2 μg/mL) against planktonic cells. In contrast, the quaternary ammonium salt of pyridoxine (N,N-dimethyl-N-((2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridin-5-yl)methyl)octadecan-1-aminium chloride (3)) demonstrated high biocidal activity against both planktonic and biofilm-embedded bacteria. Thus, the complete death of biofilm-embedded S. aureus and S. epidermidis cells was obtained at concentrations of 64 and 16 μg/mL, respectively. We suggest that the quaternary ammonium salts of pyridoxine are perspective to design new synthetic antibiotics and disinfectants for external application against biofilm-embedded cells.
Van-der Waals heterostructures assembled from one or few atomic layer thickness crystals are becoming increasingly more popular in condensed matter physics. These structures are assembled using transfer machines, those are based on mask aligners, probe stations or are home-made. For many laboratories it is vital to build a simple, convenient and universal transfer machine. In this paper we discuss the guiding principles for the design of such a machine, review the existing machines and demonstrate our own construction, that is powerful and fast-in-operation. All components of this machine are extremely cheap and can be easily purchased using common online retail services. Moreover, assembling a heterostructure out of exfoliated commercially available hexagonal boron nitride and tungsten diselenide crystals with a pick-up technique and using the microphotolumenescence spectra, we show well-resolved exciton and trion lines, as a results of disorder suppression in WSe2 monolayer. Our results thus show that technology of the two-dimensional materials and heterostructures becomes accessible to anyone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.