In this paper, the problem of increasing the strength and elastic modulus of unidirectional structural glass-fiberreinforced plastic (GFRP) is considered and the possibilities of using hybrid reinforcement based on GFRP and high-strength steel cord wire are discussed. Static tensile testing of laboratory samples of metal-glass-reinforced plastics was performed, the results of which show the significant dependence of the mechanical characteristics on the adhesion of both filler components to the binder. To realize high mechanical characteristics of the metal-glasspolymer composites under consideration, it is necessary, besides ensuring strong adhesion of filler to binder, to create a certain gradient of the elastic modulus of the intermediate layer near the surfaces of the components using bionic principles for constructing high-strength natural joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.