Analyzing single trial brain activity remains a challenging problem in the neurosciences. We gain purchase on this problem by focusing on globally synchronous fields in within-trial evoked brain activity, rather than on localized peaks in the trial-averaged evoked response (ER). We analyzed data from three measurement modalities, each with different spatial resolutions: magnetoencephalogram (MEG), electroencephalogram (EEG) and electrocorticogram (ECoG). We first characterized the ER in terms of summation of phase and amplitude components over trials. Both contributed to the ER, as expected, but the ER topography was dominated by the phase component. This means the observed topography of cross-trial phase will not necessarily reflect the phase topography within trials. To assess the organization of within-trial phase, traveling wave (TW) components were quantified by computing the phase gradient. TWs were intermittent but ubiquitous in the within-trial evoked brain activity. At most task-relevant times and frequencies, the within-trial phase topography was described better by a TW than by the trial-average of phase. The trial-average of the TW components also reproduced the topography of the ER; we suggest that the ER topography arises, in large part, as an average over TW behaviors. These findings were consistent across the three measurement modalities. We conclude that, while phase is critical to understanding the topography of event-related activity, the preliminary step of collating cortical signals across trials can obscure the TW components in brain activity and lead to an underestimation of the coherent motion of cortical fields.
Mental imagery is a complex cognitive process that resembles the experience of perceiving an object when this object is not physically present to the senses. It has been shown that, depending on the sensory nature of the object, mental imagery also involves correspondent sensory neural mechanisms. However, it remains unclear which areas of the brain subserve supramodal imagery processes that are independent of the object modality, and which brain areas are involved in modality-specific imagery processes. Here, we conducted a functional magnetic resonance imaging study to reveal supramodal and modality-specific networks of mental imagery for auditory and visual information. A common supramodal brain network independent of imagery modality, two separate modality-specific networks for imagery of auditory and visual information, and a common deactivation network were identified. The supramodal network included brain areas related to attention, memory retrieval, motor preparation and semantic processing, as well as areas considered to be part of the default-mode network and multisensory integration areas. The modality-specific networks comprised brain areas involved in processing of respective modality-specific sensory information. Interestingly, we found that imagery of auditory information led to a relative deactivation within the modality-specific areas for visual imagery, and vice versa. In addition, mental imagery of both auditory and visual information widely suppressed the activity of primary sensory and motor areas, for example deactivation network. These findings have important implications for understanding the mechanisms that are involved in generation of mental imagery.
In magnetoencephalography (MEG) and electroencephalography (EEG), independent component analysis is widely applied to separate brain signals from artifact components. A number of different methods have been proposed for the automatic or semiautomatic identification of artifact components. Most of the proposed methods are based on amplitude statistics of the decomposed MEG/EEG signal. We present a fully automated approach based on amplitude and phase statistics of decomposed MEG signals for the isolation of biological artifacts such as ocular, muscle, and cardiac artifacts (CAs). The performance of different artifact identification measures was investigated. In particular, we show that phase statistics is a robust and highly sensitive measure to identify strong and weak components that can be attributed to cardiac activity, whereas a combination of different measures is needed for the identification of artifacts caused by ocular and muscle activity. With the introduction of a rejection performance parameter, we are able to quantify the rejection quality for eye blinks and CAs. We demonstrate in a set of MEG data the good performance of the fully automated procedure for the removal of cardiac, ocular, and muscle artifacts. The new approach allows routine application to clinical measurements with small effect on the brain signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.