To specify when and where Ig class switch recombination (CSR) takes place, a good molecular marker closely associated with active CSR is required. CSR is accompanied by deletion of circular DNA from the Ig heavy chain locus. The circular DNA contains a DNA segment between S and a target S region including its I promoter, which is driven by specific cytokine stimulation before CSR. We found that the specific I promoter is still active in looped-out circular DNA and directs production of I-C transcripts termed "circle transcripts.
Photoactive yellow protein (PYP) is photoconverted to its putative active form (PYP(M)) with global conformational change(s). The changes in the secondary structure were studied by far-UV circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy using PYP, which lacks N-terminal 6, 15, or 23 amino acid residues (T6, T15, and T23, respectively). Irradiation of truncated PYPs induced the loss of the CD signal, where the maximal difference was located at 222 nm. The reduction of the CD signal was significantly larger than the calculated CD of the N-terminal helices, indicating that it is mainly accounted for by the unfolding and/or structural change of the helices located outside the N-terminal region. The difference FTIR spectra between dark and photosteady states recorded using the solution samples demonstrated that large absorbance changes in the amide mode of the beta-sheet were reduced and downshifted by truncation. The structural change of the beta-sheet is therefore closely correlated with the N-terminal loop. NaCl decelerates the decay of intact PYP(M) and T6(M) at low concentrations (<500 mM) but accelerates decay at high concentrations (>1000 mM). For T15(M) and T23(M), NaCl accelerates their decay at >100 mM but never decelerates their decay, suggesting that the electrostatic interaction, which plays an important role for the recovery of PYP from PYP(M), is lost by removing positions 7-15. The electrostatic interaction between this region and the beta-scaffold is likely to promote the conformational change of PYP(M) for recovery of PYP.
The light-induced global conformational change of photoactive yellow protein was directly observed by small-angle X-ray scattering (SAXS). The N-terminal 6, 15, or 23 amino acid residues were enzymatically truncated (T6, T15, or T23, respectively), and their near-UV intermediates were accumulated under continuous illumination for SAXS measurements. The Kratky plot demonstrated that illumination induced partial loss of globularity. The change in globularity was marked in T6 but very small in T15 and T23, suggesting that structural change in positions 7-15 mainly reduces the globularity. The radius of gyration (R(g)) estimated by Guinier plot was increased by 1.1 A for T6 and 0.7 A for T15 and T23 upon illumination. As T23 lacks most of the N-terminal loop, structural change in the main part composed of the PAS core, helical connector, and beta-scaffold caused an increase of R(g) by 0.7 A. The structural change of positions 7-15 caused an additional increase by 0.4 A. The decrease of R(g) upon truncation of positions 7-15 for dark state was 0.3 A, while that for the intermediate was 0.7 A, suggesting that this region moves outward on formation of the intermediate. These results indicate that a light-induced structural change of PYP takes place in the main part and N-terminal 15 amino acid residues. The former induces only dimensional increase, but the latter results in additional change in shape.
Novel photochromic triangle terarylenes are synthesized, and their photochromic properties and thermal bleaching kinetics are investigated. Fairly high photochemical coloration reactivity is observed with photochemical quantum yield as high as 0.6 for 4,5-dithienyl thiazole derivative. Introduction of phenylethynyl groups into the molecular structure allows systematic control of thermal cycloreversion time constant over 10 5 times, and the half-lifetime shorter than 2 s is achieved at 303 K. The kinetic analysis of thermal cycloreversion reaction clearly shows significant contribution of frequency factor A. A novel molecular designing concept for systematic control of thermal bleaching reaction rate is presented without taking bulky functional groups on reaction center.
Importance of the CH/pi interaction on the structure and function of the photoactive yellow protein (PYP) was substantiated. Focusing on the phenyl ring of Phe6 adjacent to the alkyl chain of Lys123, the mutants for these amino acid residues were characterized. The results demonstrated that the mutants lacking the pi-electron at position 6 or the alkyl chain at position 123 show substantial malfunction. This is a clear example that single CH/pi weak interaction plays a crucial role in the normal action of the protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.