Amyloid beta (Aβ) peptides are considered to be strongly related to Alzheimer's disease. Aβ peptides form a β-sheet structure on hard lipid membranes and it would aggregate to form amyloid fibrils, which are toxic to cells. However, the aggregation mechanism of Aβ is not fully understood. To evaluate the influence of the lipid membrane condition for Aβ aggregation, the adsorption forms of Aβ (1-40) on mixture membranes of lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol β-d-glucoside (β-CG) were investigated by time-of-flight secondary ion mass spectrometry. As a result, Aβ adsorbed along the localized DMPC lipid on the mixture lipid membranes, whereas it was adsorbed homogeneously on the pure DMPC and β-CG membranes. Moreover, amino acid fragments that mainly existed in the n-terminal of Aβ (1-40) peptide were strongly detected on the localized DMPC region. These results suggested that the Aβ was adsorbed along the localized DMPC lipid with a characteristic orientation. These findings suggest that the hardness of the membrane is very sensitive to coexisting materials and that surface hardness is important for aggregation of Aβ.
The design of biosensors and artificial organs using biocompatible materials with a low affinity for amyloid β peptide (Aβ) would contribute to the inhibition of fibril growth causing Alzheimer’s disease. We systematically studied the amyloidogenicity of Aβ on various planar membranes. The planar membranes were prepared using biocompatible polymers, viz., poly(methyl methacrylate) (PMMA), polysulfone (PSf), poly(L-lactic acid) (PLLA), and polyvinylpyrrolidone (PVP). Phospholipids from biomembranes, viz., 1,2-dioleoyl-phosphatidylcholine (DOPC), 1,2-dipalmitoyl-phosphatidylcholine (DPPC), and polyethylene glycol-graft-phosphatidyl ethanolamine (PEG-PE) were used as controls. Phospholipid- and polymer-based membranes were prepared to determine the kinetics of Aβ fibril formation. Rates of Aβ nucleation on the PSf- and DPPC-based membranes were significantly higher than those on the other membranes. Aβ accumulation, calculated by the change in frequency of a quartz crystal microbalance (QCM), followed the order: PSf > PLLA > DOPC > PMMA, PVP, DPPC, and PEG-PE. Nucleation rates exhibited a positive correlation with the corresponding accumulation (except for the DPPC-based membrane) and a negative correlation with the molecular weight of the polymers. Strong hydration along the polymer backbone and polymer–Aβ entanglement might contribute to the accumulation of Aβ and subsequent fibrillation.
Amyloid beta (Aβ) adsorption onto lipid membranes depending on the condition of a lipid was investigated by means of time-offlight secondary ion mass spectrometry (ToF-SIMS). Aβ aggregation depending on the different hardness of lipid membrane has not been clarified yet although it is important to understand Alzheimer's disease. Aβ (1-40) on three different lipid membranes having different transition temperatures has been evaluated using ToF-SIMS in the previous study, and in this study, the differences between Aβ on liquid crystalline-phase lipid membranes and that on gel-phase lipid membranes were investigated in order to clarify the mechanisms of aggregation and peptide folding change. ToF-SIMS secondary ion images clearly showed Aβ distribution on lipid membranes. Because ToF-SIMS data is extremely complicated although it contains rich information, it was analysed by principal component analysis (PCA). Score images indicated by PCA are consistent with the images of secondary ions related to Aβ and are clearer than the secondary ion images. Moreover, PCA results suggest the difference between Aβ on different lipid membranes in terms of amino acid fragment ions, and the orientation of Aβ on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.