Results in the present study indicate that all MDR1 stably expressing cells have efflux activity for various P-gp substrates, and that interspecies differences and similarities of the P-gp substrate efflux activity may exist.
ABSTRACT:We established stable HEK293 cell lines expressing double isoforms, UGT1A1 and UGT1A9, UGT1A4 and UGT1A9, or UGT1A6 and UGT1A9, as well as stable cell lines expressing each single isoform. To analyze the protein-protein interaction between the UGT1As, we investigated the thermal stability and resistance to detergent. UGT1A9 uniquely demonstrated thermal stability, which was enhanced in the presence of UDP-glucuronic acid (>90% of control), and resistance to detergent. Interestingly, UGT1A1, UGT1A4, and UGT1A6 acquired thermal stability and resistance to detergent by the coexpression of UGT1A9. An immunoprecipitation assay revealed that UGT1A6 and UGT1A9 interact in the double expression system. Using the single expression systems, it was confirmed that estradiol 3-O-glucuronide, imipramine N-glucuronide, serotonin O-glucuronide, and propofol O-glucuronide formations are specific for UGT1A1, UGT1A4, UGT1A6, and UGT1A9, respectively. By kinetic analyses, we found that the coexpressed UGT1A9 significantly affected the kinetics of estradiol 3-O-glucuronide formation (decreased V max ), imipramine N-glucuronide formation (increased K m and V max ), and serotonin O-glucuronide formation (decreased V max ) catalyzed by UGT1A1, UGT1A4, and UGT1A6, respectively. On the other hand, the coexpressed UGT1A1 increased K m and decreased the V max of the propofol O-glucuronide formation catalyzed by UGT1A9. The coexpressed UGT1A4 and UGT1A6 also increased the V max of the propofol Oglucuronide formation by UGT1A9. This is the first study showing that human UGT1A isoforms interact with other isoforms to change the enzymatic characteristics.
In consideration of the Ki values obtained in the in vitro inhibition study and the concentration of 1,4-dihydropyridine calcium antagonists in human liver, the possibility of in vivo drug interactions of nicardipine and other drugs which are mainly metabolised by CYP2C9 and/or CYP3A4 was suggested. The inhibition of human CYP isoforms by 1,4-dihydropyridine calcium antagonists except nicardipine might be clinically insignificant.
The human UDP-glucuronosyltransferase, UGT1A9, catalyses glucuronidations of various endobiotics and xenobiotics. In the present study, all exons, exon-intron junctions, and the 5'-flanking region (-273 bp) of the UGT1A9 gene in a Japanese subject were sequenced. One base insertion of thymidine in a promoter region of the UGT1A9 gene resulting in A(T)10AT was identified compared to the reference sequence of AF297093 (A(T)9AT). The allele was termed UGT1A9*22. A polymerase chain reaction-single strand conformation polymorphism method was developed to genotype the allele. The allele frequencies of the mutation in 87 Japanese, 50 Caucasian and 50 African-American subjects were 60%, 39% and 44%, respectively. The significance of the polymorphism was investigated by the construction of luciferase reporter plasmids containing 170 bp of the 5'-flanking region of the gene transfected into human hepatoma HepG2 cells. The luciferase activity of the promoter construct containing the A(T)10AT sequence was 2.6-fold higher than that of the construct containing the A(T)9AT sequence. In conclusion, the mutant allele with one base insertion in the promoter region of the UGT1A9 gene would alter the level of enzyme expression and the metabolism of those drugs that are substrates of UGT1A9.
ABSTRACT:Recently, a chimeric mouse line in which the liver could be replaced by more than 80% with human hepatocytes was established in Japan. Because the chimeric mouse produces human albumin (hAlb), replacement by human hepatocytes could be estimated by the hAlb concentration in the blood of chimeric mice. In this study, we investigated human major cytochrome P450 (P450) in the livers of chimeric mice by mRNA, protein, and enzyme activity using real-time polymerase chain reaction, Western blot analysis, and high-performance liquid chromatography, respectively. Chimeric mice with humanized liver generated using hepatocytes from a Japanese and white donor were used. Human P450 mRNAs were expressed in the liver of chimeric mice, and major human P450 proteins such as CYP1A2, CYP2C9, and CYP3A4 were detected. The expression of P450 mRNA and protein was correlated with the hAlb concentration in the blood. The enzyme activities such as diclofenac 4-hydroxylase activity, dexamethasone 6-hydroxylase activity, and coumarin 7-hydroxylase activity, activities that are specific to human P450 but not to murine P450, were increased in a hAlb concentration-dependent manner. The chimeric mice with nearly 90% replacement by human hepatocytes demonstrated almost the same protein contents of human P450s and drug-metabolizing enzyme activity as those of the donor. It was confirmed that genomic DNA from the livers of the chimeric mice and that from the liver of the donor exhibited the same genotype. In conclusion, the chimeric mice exhibited a similarly efficient capacity of drug metabolism as humans, suggesting that they could be a useful animal model for drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.