PurposeEvidence of efficacy and safety of, and especially mortality related to, recombinant human thrombomodulin (rhTM) treatment for sepsis-induced disseminated intravascular coagulation (DIC) is limited. We hypothesized that patients with sepsis-induced DIC receiving treatment with rhTM would have improved mortality compared with those with similar acuity who did not.MethodsThis retrospective cohort study conducted in three tertiary referral hospitals in Japan between January 2006 and June 2011 included all patients with sepsis-induced DIC who required ventilator management. Primary endpoint was in-hospital mortality, with duration of intensive care unit treatment, changes in DIC scores and rate of bleeding complications as secondary endpoints. Regression technique was used to develop a propensity model adjusted for baseline imbalances between groups.ResultsEligible were 162 patients with sepsis-induced DIC; 68 patients received rhTM and 94 did not. Patients receiving rhTM had higher severity of illness according to baseline characteristics. After adjusting for these imbalances by stratified propensity score analysis, treatment with rhTM was significantly associated with reduced in-hospital mortality (adjusted hazard ratio, 0.45; 95 % confidential interval, 0.26–0.77; p = 0.013). An association between rhTM treatment and higher numbers of intensive care unit-free days, ventilator-free days, and vasopressor-free days were observed. DIC scores were significantly decreased in the rhTM group compared with the control group in the early period after rhTM treatment, whereas the incidence of bleeding-related adverse events did not differ between the two groups.ConclusionsTherapy with rhTM may be associated with reduced in-hospital mortality in adult mechanically ventilated patients with sepsis-induced DIC.
IntroductionThe safety and efficacy of recombinant human soluble thrombomodulin (rhTM) have been demonstrated, with promising evidence suggestive of efficacy for patients with severe sepsis involving coagulopathy in a phase IIb randomized controlled trial. However, the benefit profiles of rhTM have not been elucidated. The purpose of this study was to explore whether patients with greater disease severity, determined according to the Acute Physiology and Chronic Health Evaluation (APACHE) II and Sequential Organ Failure Assessment (SOFA) scores, would experience treatment benefit from rhTM administration.MethodsThis was a post hoc, subgroup analysis of a multicenter retrospective cohort study conducted in three Japanese tertiary referral hospitals. Patients with sepsis-induced disseminated intravascular coagulation (DIC) who required ventilator management were included. We stratified patients into several strata according to disease severity, determined by APACHE II and SOFA scores, using classification and regression trees for survival data. Intervention effects, expressed as hazard ratios (HR), were analyzed using Cox regression analysis adjusted for a propensity model to detect subgroup heterogeneity of the effects of rhTM on in-hospital mortality.ResultsParticipants were 162 patients with sepsis-induced DIC; 68 of these patients received rhTM and 94 did not. After adjusting for imbalances, rhTM administration was significantly associated with reduced mortality in high-risk patients (APACHE II: 24 to 29; HR: 0.281; 95% confidence interval (CI): 0.093 to 0.850; P = 0.025). A similar nonsignificant tendency was observed in the very high-risk subset (APACHE II: ≥30; HR: 0.529; 95% CI: 0.202 to 1.387; P = 0.195) but was not evident in the moderate-risk subset of patients (APACHE II: <24; HR: 0.814; 95% CI: 0.351 to 1.884; P = 0.630). A similar tendency was observed in analysis of SOFA scores (moderate-risk subset (SOFA: <11), P = 0.368; high-risk subset (SOFA: ≥11), P = 0.042).ConclusionsSurvival benefit was observed with rhTM treatment in sepsis-induced DIC and high risk of death according to baseline APACHE II and SOFA scores.
Persister cells, or persisters, are a specific subpopulation of bacterial cells that have acquired temporary antibiotic-resistant phenotypes. In this study, we showed that Escherichia coli produces many more persister cells in colony–biofilm culture than in the usual liquid culture and that these persisters can be maintained in higher numbers than those from liquid culture for up to 4 weeks at 37°C in a fresh, nutrient-rich, antibiotic-containing medium, even after complete withdrawal from the colony–biofilm culture. This suggests the presence of a long-retention effect, or “memory effect”, in the persister cell state of E. coli cells. We also discovered that such increases in persisters during colony–biofilm culture and their memory effects are common, to a greater or lesser degree, in other bacterial species. This is true not only for gram-negative bacteria (Acinetobacter and Salmonella) but also for gram-positive bacteria (Staphylococcus and Bacillus). This is the first report to suggest the presence of a common memory mechanism for the persister cell state, which is inscribed during colony–biofilm culture, in a wide variety of bacteria.
Background: Bronchial asthma is a chronic airway disorder characterized by bronchial inflammation. Oxidative stress is a key component of inflammation. Glutathione S-transferase P1 (GSTP1), the abundant isoform of glutathione S-transferases (GSTs) in lung epithelium, plays a key role in cellular protection against oxidative stress. Several studies have shown that the GSTP1 geneis involved in the pathogenesis of asthma and a gene-gene interaction may occur within the GST gene superfamily. Methods: We screened single-nucleotide polymorphisms (SNPs) at the GSTP1 locus and performed an association study in the Japanese population using two independent case-control groups (group 1: 391 pediatric patients with asthma, 462 adult patients with asthma, and 639 controls, and group 2: 115 pediatric patients with asthma and 184 controls). The effect of GSTM1 null/present genotype on the association between GSTP1 Ile105Val and asthma was also investigated. Results: We identified 20 SNPs at this locus and found this region consisted of one linkage disequilibrium block represented by four SNPs (tag SNPs). The association between the Ile105Val polymorphism in the GSTP1 gene and childhood asthma was significant in both groups (p = 0.047 in group 1, and p = 0.021 in group 2). This association was only significant in patients with GSTM1-positive genotype in both groups (group 1: GSTM1 present p = 0.013 and GSTM1 null p = 0.925, and group 2: GSTM1 present p = 0.015 and GSTM1 null p = 0.362). Conclusions: These findings suggest that the GSTP1 gene is a childhood asthma susceptible gene, and the GSTM1 gene is a modifier gene of GSTP1 for the risk of childhood asthma in the Japanese population.
Several studies have shown linkage of chromosome region 12q13-24 to bronchial asthma and related phenotypes in ethnically diverse populations. In the Japanese population, a genome-wide study failed to show strong evidence of linkage of this region. Chromosome 12 genes that showed association with the disease in at least one report include: the signal transducer and activator of transcription 6 gene (STAT6), the nitrogen oxide synthetase 1 gene (NOS1), the interferon c gene (IFNG), and the activation-induced cytidine deaminase gene (AICDA). To evaluate the linkage between chromosome 12 and childhood asthma in the Japanese population, we performed sib-pair linkage analysis on childhood asthma families using 18 microsatellite markers on chromosome 12. To investigate association between chromosome 12 candidate genes and asthma, distributions of alleles and genotypes of repeat polymorphisms of STAT6, NOS1, and IFNG were compared between controls and patients. Single nucleotide polymorphism of AICDA was also investigated. Chromosome region 12q24.23-q24.33 showed suggestive linkage to asthma. The NOS1 intron 2 GT repeat and STAT6 exon 1 GT repeat were associated with asthma. Neither the IFNG intron 1 CA repeat nor 465C/T of AICDA showed any association with asthma. Our results suggest that NOS1 and STAT6 are asthmasusceptibility genes and that chromosome region 12q24.23-q24.33 contains other susceptibility gene(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.