Poly-β-hydroxybutyrate (PHB) in cyanobacteria, which accumulates as energy and carbon sources through the action of photosynthesis, is expected to substitute for petroleum-based plastics. This study first demonstrated that PHB accumulation was induced, with the appearance of lipid droplets, in sulfur (S)-starved cells of a cyanobacterium, Synechocystis sp. PCC 6803, however, to a lower level than in nitrogen (N)- or phosphorus (P)-starved cells. Concomitantly found was repression of the accumulation of total cellular proteins in the S-starved cells to a similar level to that in N-starved cells, and a severer level than in P-starved cells. Intriguingly, PHB accumulation was induced in Synechocystis even under nutrient-replete conditions, upon repression of the accumulation of total cellular proteins through treatment of the wild type cells with a protein synthesis inhibitor, chloramphenicol, or through disruption of the argD gene for Arg synthesis. Meanwhile, the expression of the genes for PHB synthesis was hardly induced in S-starved cells, in contrast to their definite up-regulation in N- or P-starved cells. It therefore seemed that PHB accumulation in S-starved cells is achieved through severe repression of protein synthesis, but is smaller than in N- or P-starved cells, owing to little induction of the expression of PHB synthesis genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.