SUMMARY:To determine the assembly pathway of desmoglein 3 (Dsg3) into desmosomes and the subsequent effects of pemphigus vulgaris immunoglobulin G (PV-IgG) on such, we employed a time-lapsed labeling for FITC/Rhodamine (Rod) double-stained immunofluorescence and 5-nm/10-nm gold double-stained immunoelectron microscopy by using PV-IgG, which was confirmed to react specifically Dsg3. Cells from a human squamous cell carcinoma cell line (DJM-1) were first treated briefly with PV-IgG (3 min), then incubated in either anti-human IgG-FITC or 5-nm gold antibody-containing medium (5 min), followed by a 60-minute chase in normal medium without antibodies. The same cells were reincubated with PV-IgG medium for 3 minutes, followed by either anti-human IgG-Rod or 10-nm gold antibodies for 5 minutes. Using this method, FITC and 5-nm gold particles show the fate of Dsg3-PV-IgG complexes during the following 60-minute chase. IgG-Rod or 10-nm gold particles, which are bound during the last 5 minutes of the chase, show Dsg3 molecules newly expressed on the cell surface during the 60-minute-chase period. Initially, Dsg3 formed two types of small clusters on the nondesmosomal plasma membrane, ie, either half-desmosome-like clusters with keratin intermediate filament (KIF) attachment or simple clusters without KIF attachment. The PV-IgG binding to Dsg3 caused the internalization of the simple clusters into endosomes, but not the half-desmosome-like clusters. After the 60-minute-chase period, both types of cell surface Dsg3 clusters were labeled with only 10-nm gold, suggesting that new Dsg3 molecules were being delivered to the cell surface. Desmosomes were labeled with both 5-nm gold and 10-nm gold, whereas the half-desmosome-like clusters were labeled with only 10-nm gold, suggesting that the desmosomes themselves were not split. These results suggest that Dsg3 first forms simple clusters, followed by KIF-attachment, and then becomes integrated into desmosomes, and that PV-IgG-induced internalization of the nondesmosomal simple clusters of Dsg3 may represent the primary effects of PV-IgG on keratinocytes. (Lab Invest 2000, 80:1583-1592.
Human galectin-9 is a beta-galactoside-binding protein consisting of two carbohydrate recognition domains (CRDs) and a linker peptide. We have shown that galectin-9 represents a novel class of eosinophil chemoattractants (ECAs) produced by activated T cells. A previous study demonstrated that the carbohydrate binding activity of galectin-9 is indispensable for eosinophil chemoattraction and that the N- and C-terminal CRDs exhibit comparable ECA activity, which is substantially lower than that of full-length galectin-9. In this study, we investigated the roles of the two CRDs in ECA activity in conjunction with the sugar-binding properties of the CRDs. In addition, to address the significance of the linker peptide structure, we compare the three isoforms of galectin-9, which only differ in the linker peptide region, in terms of ECA activity. Recombinant proteins consisting of two N-terminal CRDs (galectin-9NN), two C-terminal CRDs (galectin-9CC), and three isoforms of galectin-9 (galectin-9S, -9M, and -9L) were generated. All the recombinant proteins had hemagglutination activity comparable to that of the predominant wild-type galectin-9 (galectin-9M). Galectin-9NN and galectin-9CC induced eosinophil chemotaxis in a manner indistinguishable from the case of galectin-9M. Although the isoform of galectin-9 with the longest linker peptide, galectin-9L, exhibited limited solubility, the three isoforms showed comparable ECA activity over the concentration range tested. The interactions between N- and C-terminal CRDs and glycoprotein glycans and glycolipid glycans were examined using frontal affinity chromatography. Both CRDs exhibited high affinity for branched complex type sugar chain, especially for tri- and tetraantennary N-linked glycans with N-acetyllactosamine units, and the oligosaccharides inhibited the ECA activity at low concentrations. These results suggest that the N- and C-terminal CRDs of galectin-9 interact with the same or a closely related ligand on the eosinophil membrane when acting as an ECA and that ECA activity does not depend on a specific structure of the linker peptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.