Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily involves the motor neuron system. Approximately 5-10% of ALS is familial. Superoxide dismutase 1 (SOD1) gene mutations are shown to be associated with about 20% of familial ALS (FALS) patients. The neuronal Lewy-body-like hyaline inclusion (LBHI) and astrocytic hyaline inclusion (Ast-HI) are morphological hallmarks of certain SOD1-linked FALS patients with SOD1 gene mutant and transgenic mice expressing human SOD1 with G85R mutation. From the detailed immunohistochemical analyses, the essential common protein of both inclusions is SOD1. Ultrastructurally, both inclusions consist of granule-coated fibrils 15-25 nm in diameter. Based on the immuno-electron microscopical finding that these abnormal granule-coated fibrils are positive for SOD1, the formation (or aggregation) of the abnormal fibrils containing SOD1 would be essential evidence in diseases caused by various SOD1 mutations. The granule-coated fibrils are also modified by advanced glycation end products (AGEs). The AGEs themselves are insoluble molecules with direct toxic effects on cells. AGE formation of SOD1 composing the granule-coated fibrils (probable AGE-modified mutant SOD1) may amplify their aggregation and produce a more marked toxicity.
To clarify the biological significance of the neuronal Lewy body-like hyaline inclusions and astrocytic hyaline inclusions characteristically found in patients with familial amyotrophic lateral sclerosis with superoxide dismutase-1 (SOD1) gene mutations and in transgenic mice expressing human SOD1 with G85R mutation, the detailed protein composition in both types of inclusions was immunohistochemically analyzed using 45 different antibodies. Both types of inclusions had very strong immunoreactivity for SOD1. The SOD1-positive inclusions in both cell types were also immunoreactive for the insoluble advanced glycation endproducts (AGEs) such as Nepsilon-(carboxymethyl)lysine (CML), pyrraline and pentosidine: both inclusions in both conditions were ultrastructurally composed of the granule-coated fibrils that had immunoreactivities to CML and pyrraline. Both types of inclusions were negative for stress-response proteins (SRPs), 4-hydroxy-2-nonenal (HNE), acrolein, nitric oxide synthases (NOSs) and nitrotyrosine as representative markers of oxidative stress. The neurons and astrocytes of the normal individuals and non-transgenic mice showed no significant immunoreactivity for SOD1, AGEs, SRPs, HNE, acrolein, NOSs or nitrotyrosine. Our results suggest that a portion of the SOD1 composing both type of inclusions, probably toxic mutant SOD1, is modified by the AGEs, and that the formation of the AGE-modified SOD1 is one of the mechanisms responsible for the aggregation involving no significant oxidative mechanisms.
The glial cytoplasmic inclusion (GCI) is a histological hallmark for multiple system atrophy (MSA): these inclusions are found in oligodendrocytes and consist of abnormal granule-coated fibrils of approximately 24- to 40-nm diameter. To clarify the significance of the presence of midkine (MK) in these GCIs, we carried out immunohistochemical, electron and immunoelectron microscopical, and Western blot analyses of MSA brains using a monoclonal antibody against the C-terminal region of human MK. Immunohistochemically, most of the GCIs were intensely stained by the antibody to MK. Electron and immunoelectron microscopy showed that the GCIs were composed of MK-positive granule-coated fibrils that were essential constituents of these inclusions. No significant MK immunoreactivity was observed in oligodendrocytes, astrocytes and neurons of the normal control subjects. The presence of MK in MSA brain but not in normal brain was confirmed by Western blotting. Together with the fact that MK is associated with fetal morphogenesis during the midgestation period, the presence of MK immunoreactivity in oligodendroglial GCIs may suggest the existence of a repair mechanism on the basis of morphogenesis in the degenerated oligodendrocytes themselves as well as the affected neurons and their axons through the oligodendrocyte-axon-neuron relationship.
Neuronal Lewy body-like hyaline inclusions (LBHI) and astrocytic hyaline inclusions (Ast-HI) are morphological hallmarks of certain familial amyotrophic lateral sclerosis (FALS) patients with superoxide dismutase-1 (SOD1) gene mutations, and transgenic mice expressing the human SOD1 gene mutation. The ultrastructure of inclusions in both diseases is identical: the essential common constituents are granule-coated fibrils approximately 15-25nm in diameter and granular materials. Detailed immunohistochemical analyses have shown that the essential common protein of the inclusions in both diseases is an SOD1 protein. This finding, together with the immunoelectron microscopy finding that the abnormal granule-coated fibrils comprising the inclusions are positive for SOD1, indicates that these granule-coated fibrils containing SOD1 are important evidence for mutant SOD1-linked disease in human and mouse. For immunoelectron microscopy, the granule-coated fibrils are modified by advanced glycation endproducts (AGE) such as N(epsilon)-carboxymethyl lysine, pyrraline and pentosidine (Maillard reaction). Based on the fact that AGE themselves are insoluble molecules with direct cytotoxic effects, the granule-coated fibrils and granular materials are not digested by the lysosomal and ubiquitin systems. The neurons and astrocytes of the normal individuals and non-transgenic mice show no significant immunoreactivity for AGE. Considered with the mutant-SOD1 aggregation toxicity, a portion of the SOD1 comprising both types of the inclusion is modified by the AGE, and the formation of the AGE-modified SOD1 (probably AGE-modified mutant SOD1) is one of the mechanisms responsible for the aggregation (i.e. granule-coated fibril formation).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.