These findings suggest that RhoA expression is negatively regulated by miR-133a in BSMs. IL-13 might, at least in part, contribute to the reduction of miR-133a.
Interleukin-13 (IL-13) is one of the central mediators for development of airway hyperresponsiveness in asthma. The signal transducer and activation of transcription 6 (STAT6) is one of the major signal transducers activated by IL-13, and a possible involvement of IL-13/STAT6 pathway in the augmented bronchial smooth muscle (BSM) contraction has been suggested. In the present study, the effect of a novel STAT6 inhibitor, AS1517499, on the development of antigen-induced BSM hyperresponsiveness was investigated. In cultured human BSM cells, IL-13 (100 ng/ml) caused a phosphorylation of STAT6 and an up-regulation of RhoA, a monomeric GTPase responsible for Ca2+ sensitization of smooth muscle contraction: both events were inhibited by co-incubation with AS1517499 (100 nM). In BALB/c mice that were actively sensitized and repeatedly challenged with ovalbumin antigen, an increased IL-13 level in bronchoalveolar lavage fluids and a phosphorylation of STAT6 in bronchial tissues were observed after the last antigen challenge. These mice had an augmented BSM contractility to acetylcholine together with an up-regulation of RhoA in bronchial tissues. Intraperitoneal injections of AS1517499 (10 mg/kg) 1 hour before each ovalbumin exposure inhibited both the antigen-induced up-regulation of RhoA and BSM hyperresponsiveness, almost completely. A partial but significant inhibition of antigen-induced production of IL-13 was also found. These findings suggest that the inhibitory effects of STAT6 inhibitory agents, such as AS1517499, both on RhoA and IL-13 up-regulations might be useful for asthma treatment.
CPI-17 is a phosphorylation-dependent inhibitor of smooth muscle myosin light chain. Using yeast two-hybrid system, we have identified the receptor for activated C kinase 1 (RACK1) as a novel interaction partner of CPI-17. The direct interaction and co-localization of CPI-17 with RACK1 were confirmed by immunoprecipitation and confocal microscopy analysis, respectively. An in vitro assay system using recombinant/purified proteins revealed that the PKC-mediated phosphorylation of CPI-17 was augmented in the presence of RACK1. These results suggest that RACK1 may play a role in PKC/CPI-17 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.