Although preterm delivery is a major global health issue, its causes and underlying mechanism remain elusive. Using mutant mice, mimicking aspects of human preterm birth, we show here that uterine decidual senescence early in pregnancy via heightened mammalian target of rapamycin complex 1 (mTORC1) signaling is a significant contributor of preterm birth and fetal death, and that these adverse phenotypes are rescued by a low dose of rapamycin, an inhibitor of mTORC1 signaling. This role of mTORC1 signaling in determining the timing of birth in mice may help us better understand the mechanism of the timing of birth in humans and develop new and improved strategies to combat the global problem of preterm birth.uterus | phospho-S6 | p21 | prostaglandins | parturition
Preterm birth is a global health issue impacting millions of mothers and babies. However, the etiology of preterm birth is not clearly understood. Our recent finding that premature decidual senescence with terminal differentiation is a cause of preterm birth in mice with uterine Trp53 deletion, encoding p53 protein, led us to explore other potential factors that are related to preterm birth. Using proteomics approaches, here, we show that 183 candidate proteins show significant changes in deciduae with Trp53 deletion as compared with normal deciduae. Functional categorization of these proteins unveiled new pathways that are influenced by p53. In particular, down-regulation of a cluster of antioxidant enzymes in p53-deficient deciduae suggests that increased oxidative stress could be one cause of preterm birth in mice harboring uterine deletion of Trp53.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.