Self-assembly of amphiphilic molecules in water is a cornerstone to build compartmentalized materials toward unique functions, whereas it is yet challenging to create uniform, discrete, and size-controlled nanocompartments. This paper is to report that precision random copolymers, amphiphilic with hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl pendants, induce precision self-assembly and self-recognition in water to form uniform, tunable, and self-sorting nanoparticles with inner-core hydrophobic compartments covered by PEG chains; the copolymers have been obtained via living or free radical copolymerization. The nanoparticles allow the on-target and predictable control of size, molecular weight, and aggregation number by tuning the primary structure of the copolymers; even mixtures of the copolymers with different composition underwent self-sorting to provide size-controlled discrete compartments.
Soft-materials such as block copolymers, surfactant and liquid crystals exhibit variety of ordered microstructures. Among them, the phase diagrams of diblock copolymers have been extensively investigated both experimentally and theoretically. Matsen and Shick[1] calculated the phase diagram of diblock copolymer melts by using self-consistent field theory (SCFT) and predicted that the phase diagram contains four types of structures: sphere packed in body-center-cubic, hexagonally-packed cylinders, lamellar and double-gyroid network. Khandpur et al.
Using a combined ultra-small-angle and small-angle scattering (CSAS) method of neutrons and X-rays, we investigated hierarchical structures of carbon black (CB) highly loaded in polyisoprene (PI) and poly-(styrene-random-butadiene) copolymer (SBR) under mechanical field (defined respectively as CB/PI and CB/ SBR) as well as in toluene under a sonic field (defined as CB/toluene). In order to analyze each structure level comprising the hierarchical structures of CB from the CSAS profiles, we employed the unified Guinier/powerlaw approach proposed by Beaucage (J. Appl. Cryst. 1995, 28, 717). Furthermore, in order to extract not only sizes but also shapes of the structure elements, we developed a modified approach, in which the Guinier scattering function utilized in the Beaucage approach was replaced by a form factor of the corresponding structure. Comparison of the scattering profiles from CB/PI and CB/SBR with CB/toluene clarified that (i) the smallest structure elements of CB (that further form mass-fractal objects) in PI and SBR were not an unbreakable unit of the CB filler which resulted after sonification in toluene but were instead composed of the several unbreakable units bounded together by polymer chains (defined as "dispersible units") and (ii) sizes and shapes of the dispersible units depended on the polymer matrix: Its size was larger in PI than in SBR. (iii) Moreover, the enlarged size of the dispersible unit in PI was found to enlarge the upper cutoff length of the mass-fractal structure in PI, while the mass-fractal dimensions themselves remained unchanged between PI and SBR. Hence, the detailed characterizations of the hierarchical structures by using CSAS shed new light on the dispersion process of the filler compound in the polymer matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.