Formaldehyde is a carcinogen to which humans are exposed daily, but few methods are available to quantify formaldehyde in biological samples. We developed a simple, sensitive and rapid technique for the quantification of formaldehyde in urine by derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine, using a headspace sampler coupled to a gas chromatograph equipped with an electron capture detector. The detection limit was 1.08 microg/L. The overall recovery of formaldehyde spiked in urine was 99%. The concentration of formaldehyde in urine obtained from healthy volunteers ranged from 56.85 to 144.57 microg/L. This method can be used successfully to measure formaldehyde in urine.
Tooth crown patterning is governed by the growth and folding of the inner enamel epithelium (IEE) and the following enamel deposition forms outer enamel surface (OES). We hypothesized that overall dental crown shape and covariation structure are determined by processes that configurate shape at the enamel-dentine junction (EDJ), the developmental vestige of IEE. This this hypothesis was tested by comparing patterns of morphological variation between EDJ and OES in human permanent maxillary first molar (UM1) and deciduous second molar (um2). Using geometric morphometric methods, we described morphological variation and covariation between EDJ and OES, and evaluated the strength of two components of phenotypic variability, canalization and morphological integration, in addition to the relevant evolutionary flexibility, i.e. the ability to respond to selective pressure. The strength of covariation between EDJ and OES was greater in um2 than in UM1, and the way that multiple traits covary between EDJ and OES was different between these teeth. The variability analyses showed that EDJ had less shape variation and a higher level of morphological integration than OES, which indicated that canalization and morphological integration acted as developmental constraints. These tendencies were greater in UM1 than in um2. On the other hand, EDJ and OES had a comparable level of evolvability in these teeth. Amelogenesis could play a significant role in tooth shape and covariation structure, and its influence was not constant among teeth, which may be responsible for the differences in the rate and/or period of enamel formation.
The life history of a female individual skeleton (ST61) from the Edo period (AD 1603(AD -1868 was investigated by using multi-tissue and multi-isotope analyses. Her gravestone and historical documents revealed that ST61 was a grandmother of a chief retainer of the Akashi clan who died in 1732 aged 77 years. Radiocarbon and sulfur stable isotope analyses indicated that the contribution of marine foods to the ST61 diet was relatively low (17.2% protein) despite the relatively higher nitrogen isotope ratio of the rib bone collagen. Carbon and nitrogen stable isotope analysis of the serial section of tooth dentin along the growth lines indicated that breast milk was not the major protein source of ST61 after roughly 1-1.5 years of age, although this weaning pattern was not evident from the oxygen stable isotope ratios of her tooth enamel serial sections. The carbon stable isotopes in tooth dentin collagen and tooth enamel apatite suggested that her diet from 0.5 to 5 years of age possibly contained a small proportion of C 4 plants. Stable isotope ratios of the rib bone and the tooth dentin collagen differed, consistent with historical documents describing a residential change at the age of 27. The calibrated radiocarbon ages of the associated rice hull were at least 80-120 years older than the year of death of ST61. Sulfur stable isotope ratio of the rice hull suggested that fish fertilizers might have been used for paddy rice at that time. Multi-tissue and multi-isotope analyses can provide information of several kinds from different time windows even from an individual skeleton.
We conducted an interspecific comparison of skulls from two closely related but differently sized mustelid species, Mustela itatsi and M. sibirica (Mammalia, Carnivora, Mustelidae); a sexual comparison within the latter species showed remarkable size dimorphism. We clarified several differences in skull proportion related to size using allometric analyses and qualitative comparisons. Allometric analysis revealed that the skulls of male M. itatsi (the smaller species) have a relatively long palate; a slender viscerocranium and postorbital constriction; a broad, short, and low neurocranium; small carnassials; and a short mandible with a thin body and small ramus compared to the skulls of male M. sibirica (the larger species). Similar results were obtained when male M. itatsi were compared to female M. sibirica, although the male M. itatsi had a broader viscerocranium than female M. sibirica. A sexual comparison in M. sibirica revealed a larger skull size among the males with a relatively wide viscerocranium; wide postorbital constriction; a slender, long, and high neurocranium; short and wide auditory bullae; short carnassials; and a long and high mandible compared to females. Qualitative comparisons revealed changes in a few characters depending on skull size or with respect to some cranial components in each species. The interspecific differences observed were clearly larger than the intraspecific differences for three qualitative characters. The allometric and qualitative differences detected between these species suggest that each species is not simply the dwarf and/or giant morph of the other, and complicated differences were clarified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.