Endothelium-dependent vasodilatation varies during the menstrual cycle. The endogenous estradiol may be involved in this menstrual cycle-related vasodilatation.
* Thiazolidinediones have been shown to up-regulate adiponectin expression in white adipose tissue and plasma adiponectin levels, and these up-regulations have been proposed to be a major mechanism of the thiazolidinedione-induced amelioration of insulin resistance linked to obesity. To test this hypothesis, we generated adiponectin knock-out (adipo) ob/ob mice with a C57B/6 background. After 14 days of 10 mg/kg pioglitazone, the insulin resistance and diabetes of ob/ob mice were significantly improved in association with significant up-regulation of serum adiponectin levels. Amelioration of insulin resistance in ob/ob mice was attributed to decreased glucose production and increased AMP-activated protein kinase in the liver but not to increased glucose uptake in skeletal muscle. In contrast, insulin resistance and diabetes were not improved in adipo ؊/؊ ob/ob mice. After 14 days of 30 mg/kg pioglitazone, insulin resistance and diabetes of ob/ob mice were again significantly ameliorated, which was attributed not only to decreased glucose production in the liver but also to increased glucose uptake in skeletal muscle. Interestingly, adipo ؊/؊ ob/ob mice also displayed significant amelioration of insulin resistance and diabetes, which was attributed to increased glucose uptake in skeletal muscle but not to decreased glucose production in the liver. The serum-free fatty acid and triglyceride levels as well as adipocyte sizes in ob/ob and adipo ؊/؊ ob/ob mice were unchanged after 10 mg/kg pioglitazone but were significantly reduced to a similar degree after 30 mg/kg pioglitazone. Moreover, the expressions of TNF␣ and resistin in adipose tissues of ob/ob and adipo ؊/؊ ob/ob mice were unchanged after 10 mg/kg pioglitazone but were decreased after 30 mg/kg pioglitazone. Thus, pioglitazone-induced amelioration of insulin resistance and diabetes may occur adiponectin dependently in the liver and adiponectin independently in skeletal muscle.
Wintering flower buds of cold hardy Rhododendron japonicum cooled slowly to subfreezing temperatures are known to undergo extraorgan freezing, whose mechanisms remain obscure. We revisited this material to demonstrate why bud scales freeze first in spite of their lower water content, why florets remain deeply supercooled and how seasonal adaptive responses occur in regard to extraorgan freezing in flower buds. We determined ice nucleation activity (INA) of various flower bud tissues using a test tube-based assay. Irrespective of collection sites, outer and inner bud scales that function as ice sinks in extraorgan freezing had high INA levels whilst florets that remain supercooled and act as a water source lacked INA. The INA level of bud scales was not high in late August when flower bud formation was ending, but increased to reach the highest level in late October just before the first autumnal freeze. The results support the following hypothesis: the high INA in bud scales functions as the subfreezing sensor, ensuring the primary freezing in bud scales at warmer subzero temperatures, which likely allows the migration of floret water to the bud scales and accumulation of icicles within the bud scales. The low INA in the florets helps them remain unfrozen by deep supercooling. The INA in the bud scales was resistant to grinding and autoclaving at 121∘C for 15 min, implying the intrinsic nature of the INA rather than of microbial origin, whilst the INA in stem bark was autoclaving-labile. Anti-nucleation activity (ANA) was implicated in the leachate of autoclaved bud scales, which suppresses the INA at millimolar levels of concentration and likely differs from the colligative effects of the solutes. The tissue INA levels likely contribute to the establishment of freezing behaviors by ensuring the order of freezing in the tissues: from the primary freeze to the last tissue remaining unfrozen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.