Docetaxel, a semisynthetic taxane, is effective for the treatment of some solid cancers; however, docetaxel-induced intestinal damage leads to poor prognosis in some patients. Although such adverse effects have been reported to depend on the dosing-time of docetaxel, the mechanisms involved remain unclear. Wee1 expression is controlled by the clock gene complex, clock/bmal1, and contributes to cell-cycle progression. The present study was undertaken to evaluate the potential role of Wee1 in the circadian rhythm-dependent profile of docetaxel. Male mice were maintained under a 12-hour light/ dark cycle. Intestinal damage after repeated dosing of docetaxel (20 mg/kg) for 3 weeks was more severe at 14 hours after light on (HALO) than at 2 HALO. The intestinal protein expressions of Wee1, phosphorylated CDK1, and cleaved Caspase-3 were higher in the 14-HALO group than in the 2-HALO group, whereas that of survivin was lower in the 14-HALO group. Thus, it is speculated that elevated Wee1 expression inhibited CDK1 activity more by phosphorylation, which in turn caused the lower expression of survivin and consequently more activated Caspase-3 in the 14-HALO group. There were no significant differences in plasma docetaxel concentrations between the 2-and 14-HALO groups. Bindings of CLOCK and BMAL1 to the E-box regions at the wee1 gene promoter were not altered by docetaxel treatment at 2 and 14 HALO. These findings suggest that Wee1 is directly or indirectly involved in the mechanism of the circadian rhythm-dependent changes in docetaxel-induced intestinal damage. However, the mechanism for a circadian rhythm-dependent change in intestinal Wee1 expression by docetaxel remains to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.