Extracellular signal-regulated kinase (ERK), a serine/threonine protein kinase of the mitogen-activated protein kinase superfamily, is activated by various stimuli in inflammatory cells. We recently described FR180204 (5-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-1H-pyrazolo[3,4-c]pyridazin-3-amine), a novel selective ERK inhibitor. In this paper, we investigated the effect of FR180204 on collagen-induced arthritis (CIA) in DBA/1 mice, an animal model of rheumatoid arthritis (RA) mediated by type II collagen (CII)-reactive T cells and anti-CII antibodies. Preventive administration of FR180204 (100 mg/kg, i.p., b.i.d.) significantly ameliorated the clinical arthritis and body weight loss occurring in the CIA mice. Further, FR180204-treated mice showed a significant decrease in plasma anti-CII antibody levels (62%). FR180204 also attenuated delayed-type hypersensitivity in CII-immunized DBA/1 mice, an inflammatory response elicited by CII-reactive T cells, in a dose-dependent manner (52 and 62% inhibition at 32 and 100 mg/kg, respectively). Moreover, FR180204 inhibited in vitro CII-induced proliferation of lymph node cells prepared from CII-immunized mice, in which CII-specific T cells are known to undergo specific proliferation. In conclusion, our results suggest that ERK regulates both the cell-mediated and humoral immune responses in the development of CIA. ERK inhibitors may be useful as therapeutic reagents for the treatment of RA.
The behaviour of multinucleated giant cells (GCs), obtained from a giant cell tumour of the tibia and cultured on glass coverslips or on devitalized bone slices, was studied using light and electron microscopy. Monitoring the GCs on bone slices by phase-contrast microscopy revealed that they had removed calcified bone matrix resulting in excavation of lacunae, with subsequent lateral extension and perforation of the bone slices. Electron microscopy demonstrated for the first time that the GCs responsible for exavating lacunae had two specific membrane modifications, ruffled border and clear zone, and showed basically similar cytoplasmic fine structures to those of osteoclasts. Fluorescence images of the GCs on glass and on bone after rhodamine-conjugated phalloidin staining revealed that most of the GCs had an intensely fluorescent peripheral band composed of a number of F-actin dots called podosomes. Some GCs showed unusual arrangements of podosomes suggesting abortive attempts at GC formation. We have demonstrated that the band structure of the GCs cultured on bone is intimately involved in bone resorption. Two stromal cell types could be recognized. The predominant type, which seemed to be the only neoplastic element because of its proliferative capability, showed quite different fine structural and cytoskeletal features from the GCs. The other type, which was much less frequent and seemed not to proliferate, had morphological similarities to the GCs, and seemed to be their precursor. Importantly GCs cultured on bone and the osteoclasts share common structures for adhesion to and resorption of bone, strongly supporting the view that the GCs of the giant cell tumour of bone are potentially active bone resorbers and can be regarded as osteoclasts.
Nicotinamide phosphoribosyl transferase (NAMPT) is a key enzyme in the salvage pathway of mammalian nicotinamide adenine dinucleotide (NAD) biosynthesis, catalyzing the synthesis of nicotinamide mononucleotide from nicotinamide (Nam). The diverse functions of NAD suggest that NAMPT inhibitors are potential drug candidates as anticancer agents, immunomodulators, or other agents. However, difficulty in conducting high-throughput NAMPT assay with good sensitivity has hampered the discovery of novel anti-NAMPT drugs with improved profiles. We combined an in silico screening strategy with a radioisotope (RI)-based enzyme assay and rationally identified promising NAMPT inhibitors with novel structures. AS1604498 was the most potent inhibitor, with an IC 50 of 44 nM, and inhibited THP-1 and K562 cell line growth with the IC 50 of 198 nM and 673 nM, respectively. The mode of action was found to reduce intracellular NAD following apoptosis, suggesting that these compounds inhibit NAMPT in cell-based assay. This strategy can be used to discover new drug candidates with targets which are difficult to assess through high-throughput screening. Our hit compounds may be used as seed compounds for developing new therapeutics with NAMPT.Key words nicotinamide phosphoribosyl transferase; in silico screening; FK866; nicotinamide adenine dinucleotide Nicotinamide phosphoribosyl transferase (NAMPT) catalyzes a rate-limiting step in the salvage pathway of mammalian nicotinamide adenine dinucleotide (NAD) biosynthesis. Recently, intracellular NAD has received substantial attention due to the recent discovery that several enzymes, including poly(ADP-ribose) polymerase (PARP) and the Sirtuin-family proteins, use NAD as a substrate, [1][2][3] suggesting that intracellular NAD level may regulate cytokine production, 4) circadian rhythm, 5,6) metabolism, and aging 3,7) through these enzymes. FK866, an NAMPT inhibitor, has been shown to induce apoptosis of cancer cells 8) and immune cells, 9) suggesting the possibility of NAMPT inhibitors as a novel drug class. As such, FK866 and CHS-828, another NAMPT inhibitor, are currently being investigated in clinical trials for cancer treatment.10,11) However, these compounds were discovered by chance using cell-based assay, 12,13) and discovery of new NAMPT inhibitors with better structures has been hindered by the difficulty of conducting high-throughput screening (HTS) with good sensitivity. HTS presents difficulties because a radioisotope (RI)-labeled substrate is needed to retain good assay sensitivity, but a complicated procedure including separation of product from substrate prevents evaluation of large numbers of compounds.Here we report our finding of novel compounds with potent NAMPT inhibitory activity as determined using in silico screening and a 96-well-based sensitive RI-based assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.