Temporal analysis of the T cell receptor (TCR) repertoire has been used to monitor treatment-induced changes in antigen-specific T cells in patients with cancer. However, the lack of experimental models that allow a temporal analysis of the TCR repertoire in the same individual in a homogeneous population limits the understanding of the causal relationship between changes in TCR repertoire and antitumor responses. A bilateral tumor model, where tumor cells were inoculated bilaterally into the backs of mice, could be used for temporal analysis of the TCR repertoire. This study examined the prerequisite for this strategy: the TCR repertoire is conserved between bilateral tumors that grow symmetrically. Bilateral tumors and draining lymph nodes (dLNs) were collected 13 days after tumor inoculation to analyze the TCR repertoire of CD4+ and CD8+ T cells. The tumor-infiltrating T-cell clones were highly similar between the bilateral tumors and expanded to a similar extent. In addition, the differences of TCR repertoire between the bilateral tumors were equivalent to Intra-tumoral heterogeneity on one side. On the other hand, the similarity of the TCR repertoire in the bilateral dLNs was markedly lower than that in the tumor, suggesting that tumor-reactive T cell clones induced independently in each dLN are mixed during recirculation and then proportionally infiltrated the bilateral tumors. These findings provide the basis for future analysis of temporal and treatment-induced changes in tumor-reactive T cell clones using this bilateral tumor model.
The repertoire of tumor-infiltrating T cells is an emerging perspective for characterizing effective antitumor T-cell responses. Oligoclonal expansion of tumor T-cell repertoire has been evaluated; however, their association with antitumor effects is unclear. We demonstrated that the polyclonal fraction of the tumor-reactive T-cell repertoire consisting of relatively minor clones increased in tumor-bearing mice treated with anti-PD-L1 or anti-CD4 monoclonal antibody, which was correlated with antitumor effect. Meanwhile, the size of the oligoclonal fraction consisting of major clones remained unchanged. Moreover, the polyclonal fraction was enriched in progenitor exhausted T cells, which are essential for a durable antitumor response, and was more dependent on CCR7+ migratory dendritic cells, which are responsible for priming tumor-reactive T cells in the tumor-draining lymph nodes. These results suggest that the expansion of diverse tumor-reactive clones ("clonal spreading") is an important mechanism by which anti-PD-L1 and anti-CD4 treatments induce robust and durable antitumor T-cell responses.
Temporal analysis of the T cell receptor (TCR) repertoire has been used to monitor treatment-induced changes in antigen-specific T cells in patients with cancer. However, the lack of experimental models that allow temporal analysis of the TCR repertoire in the same individual in a homogeneous population limits the understanding of the causal relationship between changes in TCR repertoire and antitumor responses. A bilateral tumor model, where tumor cells were inoculated bilaterally into the backs of mice, could be used for temporal analysis of the TCR repertoire. This study examined the prerequisite for this strategy: the TCR repertoire is conserved between bilateral tumors with the same growth rate. Bilateral tumors with equivalent size and draining lymph nodes (dLNs) were collected 13 days after tumor inoculation to analyze the TCR repertoire of CD4+ and CD8+ T cells. The tumor-infiltrating T cell clones were highly conserved between the bilateral tumors, and the extent of clonal expansion was equivalent. In addition, the similarity between the bilateral tumors was equivalent to heterogeneity on one side of the tumor. The similarity of the TCR repertoire in the bilateral dLNs was markedly lower than that in the tumor, suggesting that tumor-reactive T cell clones induced independently in each dLN integrated during recirculation and then infiltrated the tumor. These findings suggest that our bilateral tumor model is suitable for temporal monitoring of the TCR repertoire to evaluate temporal and treatment-induced changes in tumor-reactive T cell clones.
The repertoire of tumor-infiltrating T cells is an emerging method for characterizing effective antitumor T-cell responses. Oligoclonal expansion of the tumor T-cell repertoire has been evaluated; however, their association with antitumor effects is unclear. We demonstrate here that the polyclonal fraction of the tumor-reactive T-cell repertoire, consisting of relatively minor clones, increased in tumor-bearing mice treated with monoclonal anti-PD-L1 or anti-CD4, which correlated with antitumor effects. Meanwhile, the size of the oligoclonal fraction consisting of major clones remained unchanged. Moreover, the polyclonal fraction was enriched in progenitor exhausted T cells, which are essential for a durable antitumor response, and was more dependent on CCR7+ migratory dendritic cells, which are responsible for priming tumor-reactive T cells in the tumor-draining lymph nodes. These results suggest that the expansion of diverse tumor-reactive clones (“clonal spreading”) represents characteristics of antitumor T-cell responses induced by anti-CD4 and anti-PD-L1 treatment.
<div>Abstract<p>The repertoire of tumor-infiltrating T cells is an emerging method for characterizing effective antitumor T-cell responses. Oligoclonal expansion of the tumor T-cell repertoire has been evaluated; however, their association with antitumor effects is unclear. We demonstrate here that the polyclonal fraction of the tumor-reactive T-cell repertoire, consisting of relatively minor clones, increased in tumor-bearing mice treated with monoclonal anti–programmed death-ligand 1 (PD-L1) or anti-CD4, which correlated with antitumor effects. Meanwhile, the size of the oligoclonal fraction consisting of major clones remained unchanged. Moreover, the polyclonal fraction was enriched in progenitor exhausted T cells, which are essential for a durable antitumor response, and was more dependent on CCR7<sup>+</sup> migratory dendritic cells, which are responsible for priming tumor-reactive T cells in the tumor-draining lymph nodes. These results suggest that the expansion of diverse tumor-reactive clones (“clonal spreading”) represents characteristics of antitumor T-cell responses induced by anti-CD4 and anti–PD-L1 treatment.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.